


Python extrahiert die angegebene Standortdatensatzmethode nach der Groupby-Gruppierung
Apr 20, 2018 pm 01:45 PMDas Folgende ist eine Python-Methode zum Extrahieren bestimmter Standortdatens?tze nach der Gruppierung. Sie hat einen guten Referenzwert und ich hoffe, dass sie für alle hilfreich ist. Kommen Sie und werfen Sie gemeinsam einen Blick darauf
Bei der Datenanalyse und Datenmodellierung müssen wir zun?chst die Daten verarbeiten und die ben?tigten Informationen extrahieren. Im Folgenden werden einige Verwendungsm?glichkeiten von Groupby vorgestellt, um die Datenverarbeitung komfortabler zu gestalten.
Wenn wir Groupby zum Extrahieren von Informationen verwenden, finden wir h?ufig einige Statistiken (Max, Min, Var usw.) der gruppierten Stichproben. Wenn wir nun den zweiten Datensatz und den drittletzten Datensatz der gruppierten Stichprobe nehmen m?chten, wie sollten wir das tun? Wir k?nnen die ersten und letzten Stichproben extrahieren, nachdem wir sie durch erste und letzte gruppiert haben. Wenn wir aber an bestimmten Orten Proben nehmen wollen, gibt es keine vorgefertigte Funktion. Wir müssen es selbst schreiben. Im Folgenden werde ich Ihnen vorstellen, wie Sie die oben genannten Funktionen implementieren.
1) Dateneinführung
Die Aktionstabelle hat 3 Spalten: Benutzer-ID, Aktionstyp und Aktionszeit, die Benutzer-ID, Benutzerverhaltenstyp und darstellen Verhalten bzw. Auftrittszeit. Das spezifische Format ist wie folgt:
2) Gruppierungsvorgang
a = action.groupby('userid') b = action.groupby('userid')['actionTime'] type(a) type(b)
Nach der Gruppierung k?nnen wir sehen, dass die Datentypen von a und b DataFrameGroupBy und SeriesGroupBy sind
3) Holen Sie sich die Nummer Operation
①Zweite/vorletzte Operationszeit durch verschiedene Benutzer
action.groupby('userid')['actionTime'].apply(lambda i:i.iloc[1] if len(i)>1 else np.nan) action.groupby('userid')['actionTime'].apply(lambda i:i.iloc[-2] if len(i)>1 else np.nan)
②Verschiedene Benutzer Die zweite/ Vorletzter Betriebszeitpunkt eines bestimmten Verhaltens
action[action['actionType']==2].groupby('userid')['actionTime'].apply(lambda i:i.iloc[1] if len(i)>1 else np.nan) action[action['actionType']==2].groupby('userid')['actionTime'].apply(lambda i:i.iloc[-2] if len(i)>1 else np.nan)
PS: Da einige Benutzer m?glicherweise nur einen Datensatz haben, kann die direkte Einnahme dazu führen Fehler, also verwende ich if, um zuerst ein Urteil zu f?llen.
Auf diese Weise k?nnen wir Proben an jeder Position der gruppierten Daten extrahieren.
Verwandte Empfehlungen:
Pandas-Methode zum Abrufen der Zeile mit dem Maximalwert in der Groupby-Gruppe
Das obige ist der detaillierte Inhalt vonPython extrahiert die angegebene Standortdatensatzmethode nach der Groupby-Gruppierung. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Hei?e KI -Werkzeuge

Undress AI Tool
Ausziehbilder kostenlos

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem v?llig kostenlosen KI-Gesichtstausch-Tool aus!

Hei?er Artikel

Hei?e Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Um die Textfehlerkorrektur und die Syntaxoptimierung mit AI zu realisieren, müssen Sie die folgenden Schritte ausführen: 1. W?hlen Sie ein geeignetes AI -Modell oder ein geeignetes AI -Modell oder ein geeignetes AI -Modell wie Baidu, Tencent API oder Open Source NLP -Bibliothek aus; 2. Rufen Sie die API über die Curl oder das Guzzle von PHP auf und verarbeiten Sie die Rückgabeergebnisse. 3.. Informationen zur Fehlerkorrektur in der Anwendung anzeigen und erm?glichen den Benutzern, zu w?hlen, ob sie angenommen werden sollen. 4. Verwenden Sie PHP-L und PHP_CODESNIFFER für die Syntaxerkennung und -codeoptimierung. 5. sammeln Sie kontinuierlich Feedback und aktualisieren Sie das Modell oder die Regeln, um den Effekt zu verbessern. Konzentrieren Sie sich bei der Auswahl von AIAPI auf die Bewertung von Genauigkeit, Reaktionsgeschwindigkeit, Preis und Unterstützung für PHP. Die Codeoptimierung sollte den PSR -Spezifikationen folgen, Cache vernünftigerweise verwenden, zirkul?re Abfragen vermeiden, den Code regelm??ig überprüfen und x verwenden

Verwenden Sie die Jointplot von Seeborn, um die Beziehung und Verteilung zwischen zwei Variablen schnell zu visualisieren. 2. Das grundlegende Streudiagramm wird durch sns.jointplot (data = tips, x = "total_bill", y = "tip", sort = "scatter") implementiert, das Zentrum ist ein Streudiagramm und das Histogramm wird auf der oberen und unteren und rechten Seite angezeigt. 3. Fügen Sie Regressionslinien und Dichteinformationen zu einer Art "Reg" hinzu und kombinieren Sie Marginal_KWS, um den Edge -Plot -Stil festzulegen. 4. Wenn das Datenvolumen gro? ist, wird empfohlen, "Hex" zu verwenden,

String -Listen k?nnen mit der join () -Methode wie '' .Join (Words) zusammengeführt werden, um "helloWorldfrompython" zu erhalten; 2. Die Zahlenlisten müssen vor dem Beitritt in Zeichenfolgen mit Karte (STR, Zahlen) oder [STR (x) ForxInnumbers] konvertiert werden. 3. Jede Typliste kann direkt in Zeichenfolgen mit Klammern und Zitaten umgewandelt werden, die zum Debuggen geeignet sind. 4. Benutzerdefinierte Formate k?nnen durch Generatorausdrücke in Kombination mit Join () implementiert werden, wie z.

Installieren Sie PYODBC: Verwenden Sie den Befehl pipinstallpyoDBC, um die Bibliothek zu installieren. 2. SQLServer verbinden: Verwenden Sie die Verbindungszeichenfolge, die Treiber, Server, Datenbank, UID/PWD oder Trusted_Connection über die Methode Pyodbc.Connect () und die SQL -Authentifizierung bzw. der Windows -Authentifizierung unterstützen; 3. überprüfen Sie den installierten Treiber: Führen Sie Pyodbc.Drivers () aus und filtern Sie den Treibernamen mit 'SQLServer', um sicherzustellen, dass der richtige Treiberame wie 'ODBCDRIVER17 für SQLServer' verwendet wird. 4. Schlüsselparameter der Verbindungszeichenfolge

Pandas.Melt () wird verwendet, um weite Formatdaten in ein langes Format umzuwandeln. Die Antwort besteht darin, neue Spaltennamen zu definieren, indem id_vars angegeben wird, die Identifikationsspalte beibehalten. 4.Value_name = 'Score' legt den neuen Spaltennamen des ursprünglichen Wertes fest und generiert schlie?lich drei Spalten, einschlie?lich Name, Betreff und Punktzahl.

PythoncanbeoptimizedFormemory-BoundoperationsByreducingoverheadThroughGeneratoren, effiziente Datastrukturen und ManagingObjectLifetimes.First, UseGeneratorsinSteadofListStoprocesslargedatasetasetasematatime, Vermeidung von loloadingeNthertomemory.Secondatasetasetematatime, Choos

Definieren Sie zun?chst ein ContactForm -Formular mit Namen, Mailbox und Nachrichtenfeldern. 2. In der Ansicht wird die Einreichung von Formular durch die Beurteilung der Postanfrage bearbeitet, und nach der überprüfung wird Cleaned_data erhalten und die Antwort wird zurückgegeben, sonst wird das leere Formular gerendert. 3. In der Vorlage verwenden Sie {{{form.as_p}}, um das Feld zu rendern und {%csrf_token%} hinzuzufügen, um CSRF -Angriffe zu verhindern; 4. Konfigurieren Sie die URL -Routing auf Punkt / Kontakt / an die Ansicht contact_view; Verwenden Sie Modelform, um das Modell direkt zu verknüpfen, um die Datenspeicherung zu erreichen. DjangoForms implementiert eine integrierte Verarbeitung von Datenüberprüfung, HTML -Rendering und Fehleraufforderungen, die für die schnelle Entwicklung sicherer Formfunktionen geeignet sind.

Die Einführung in statistische Arbitrage Statistical Arbitrage ist eine Handelsmethode, die auf der Grundlage mathematischer Modelle Preisfehlanpassungen auf dem Finanzmarkt erfasst. Die Kernphilosophie beruht auf der mittleren Regression, dh, dass die Verm?genspreise kurzfristig von langfristigen Trends abweichen, aber schlie?lich zu ihrem historischen Durchschnitt zurückkehren. H?ndler verwenden statistische Methoden, um die Korrelation zwischen Verm?genswerten zu analysieren und nach Portfolios zu suchen, die normalerweise synchron ver?ndern. Wenn das Preisverh?ltnis dieser Verm?genswerte ungew?hnlich abgewichen ist, ergeben sich Arbitrage -M?glichkeiten. Auf dem Kryptow?hrungsmarkt ist die statistische Arbitrage besonders weit verbreitet, haupts?chlich aufgrund der Ineffizienz und drastischen Marktschwankungen des Marktes selbst. Im Gegensatz zu den traditionellen Finanzm?rkten arbeiten Kryptow?hrungen rund um die Uhr und ihre Preise sind ?u?erst anf?llig für Verst??e gegen Nachrichten, Social -Media -Stimmung und technologische Upgrades. Diese konstante Preisschwankung schafft h?ufig Preisgestaltung und liefert Arbitrageure mit
