Introduction
Action recognition plays a crucial role in enabling applications like video surveillance, sports analytics, and gesture recognition. Leveraging pre-trained models with NVIDIA’s TAO Toolkit makes it easier to train high-performance action recognition models efficiently.
TAO Toolkit can be set up using docker or NGC CLI. Since we will be working on the Kaggle Notebook, we will use the NGC CLI, as the Kaggle Notebook environment does not support docker.
Note: Kaggle Notebooks don't support Docker due to security concerns, resource management, and the provision of pre-configured environments for simplified workflows.
Installation Steps:
1. Install dependencies
First, install nvidia-pyindex, a repository manager for NVIDIA’s Python-based tools that simplifies the installation process for the TAO Toolkit and related components.
!pip install nvidia-pyindex
2. Install the Nvidia TAO Toolkit and NGC-CLI
The Nvidia TAO Toolkit contains a collection of pre-trained models for various tasks such as object detection, classification, segmentation and action recognition.
!pip install nvidia-tao
Next, install the NGC-CLI (NVIDIA GPU Cloud Command Line Interface), which interacts with NVIDIA's NGC catalog to manage pre-trained models.
!wget -O ngccli_linux.zip https://ngc.nvidia.com/downloads/ngccli_linux.zip !unzip ngccli_linux.zip
3. Create an NGC account
Register for an account on the Nvidia NGC catalog to access the TAO toolkit models. Once registered, you can authenticate via the NGC CLI using your API key to download the desired models.
First, go to https://catalog.ngc.nvidia.com/ and sign up for a free account from the right menu.
Once signed in, go to the Setup section from the right drop-down menu and click on Generate Personal Key.
4. Configure the NGC CLI
Set up your environment to authenticate with NGC using the following commands. Keep your API key secure.
!chmod u+x ngc-cli/ngc
import os # Declaring the input arguments as environment variables. # This way we can directly pass the arguments during cell runtime to any command request in the Kaggle notebook. os.environ['API_KEY'] = 'your_api_key' os.environ['TYPE'] = 'ascii' os.environ['ORG'] = '0514167173176982' os.environ['TEAM'] = 'no-team' os.environ['ACE'] = 'no-ace'
# Passing the input arguments to the config command !echo -e "$API_KEY\n$TYPE\n$ORG\n$TEAM\n$ACE" | ngc-cli/ngc config set
If you see the output below, your setup is complete. Hurray!!??
Now that the NGC CLI is configured, you can list the available models:
!ngc-cli/ngc registry model list
If you want to download any specific model, you can do so by running the following command
!ngc-cli/ngc registry model download-version "nvidia/tao/actionrecognitionnet:deployable_onnx_v2.0"
Here I have downloaded the ActionRecognitionNet model. The model will be downloaded in the .onnx format.
By following the steps above, you’ve set up the TAO Toolkit on Kaggle Notebook. Now you can start exploring the world of high-performance computer vision with ease.
Happy Coding!??
The above is the detailed content of How to setup the Nvidia TAO Toolkit on Kaggle Notebook. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Python's unittest and pytest are two widely used testing frameworks that simplify the writing, organizing and running of automated tests. 1. Both support automatic discovery of test cases and provide a clear test structure: unittest defines tests by inheriting the TestCase class and starting with test\_; pytest is more concise, just need a function starting with test\_. 2. They all have built-in assertion support: unittest provides assertEqual, assertTrue and other methods, while pytest uses an enhanced assert statement to automatically display the failure details. 3. All have mechanisms for handling test preparation and cleaning: un

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

Dynamic programming (DP) optimizes the solution process by breaking down complex problems into simpler subproblems and storing their results to avoid repeated calculations. There are two main methods: 1. Top-down (memorization): recursively decompose the problem and use cache to store intermediate results; 2. Bottom-up (table): Iteratively build solutions from the basic situation. Suitable for scenarios where maximum/minimum values, optimal solutions or overlapping subproblems are required, such as Fibonacci sequences, backpacking problems, etc. In Python, it can be implemented through decorators or arrays, and attention should be paid to identifying recursive relationships, defining the benchmark situation, and optimizing the complexity of space.

To implement a custom iterator, you need to define the __iter__ and __next__ methods in the class. ① The __iter__ method returns the iterator object itself, usually self, to be compatible with iterative environments such as for loops; ② The __next__ method controls the value of each iteration, returns the next element in the sequence, and when there are no more items, StopIteration exception should be thrown; ③ The status must be tracked correctly and the termination conditions must be set to avoid infinite loops; ④ Complex logic such as file line filtering, and pay attention to resource cleaning and memory management; ⑤ For simple logic, you can consider using the generator function yield instead, but you need to choose a suitable method based on the specific scenario.

Future trends in Python include performance optimization, stronger type prompts, the rise of alternative runtimes, and the continued growth of the AI/ML field. First, CPython continues to optimize, improving performance through faster startup time, function call optimization and proposed integer operations; second, type prompts are deeply integrated into languages ??and toolchains to enhance code security and development experience; third, alternative runtimes such as PyScript and Nuitka provide new functions and performance advantages; finally, the fields of AI and data science continue to expand, and emerging libraries promote more efficient development and integration. These trends indicate that Python is constantly adapting to technological changes and maintaining its leading position.

Python's socket module is the basis of network programming, providing low-level network communication functions, suitable for building client and server applications. To set up a basic TCP server, you need to use socket.socket() to create objects, bind addresses and ports, call .listen() to listen for connections, and accept client connections through .accept(). To build a TCP client, you need to create a socket object and call .connect() to connect to the server, then use .sendall() to send data and .recv() to receive responses. To handle multiple clients, you can use 1. Threads: start a new thread every time you connect; 2. Asynchronous I/O: For example, the asyncio library can achieve non-blocking communication. Things to note

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

The core answer to Python list slicing is to master the [start:end:step] syntax and understand its behavior. 1. The basic format of list slicing is list[start:end:step], where start is the starting index (included), end is the end index (not included), and step is the step size; 2. Omit start by default start from 0, omit end by default to the end, omit step by default to 1; 3. Use my_list[:n] to get the first n items, and use my_list[-n:] to get the last n items; 4. Use step to skip elements, such as my_list[::2] to get even digits, and negative step values ??can invert the list; 5. Common misunderstandings include the end index not
