Portable Placement New for Arrays
The standard library's placement new operator allows for the allocation of memory at a specified address. However, its use with arrays raises concerns about portability due to potential discrepancies between the returned pointer and the address passed in.
Understanding the Problem
When using placement new for arrays, the returned pointer may not align with the address provided. This is explained in Note 12 of 5.3.4 of the C standard. Consequently, allocating a buffer specifically for the array becomes problematic.
Consider the following example:
#include <iostream> #include <new> class A { public: A() : data(0) {} ~A() {} int data; }; int main() { const int NUMELEMENTS = 20; char *pBuffer = new char[NUMELEMENTS * sizeof(A)]; A *pA = new(pBuffer) A[NUMELEMENTS]; // Output may show pA as four bytes higher than pBuffer std::cout << "Buffer address: " << pBuffer << ", Array address: " << pA << std::endl; delete[] pBuffer; return 0; }
This example often results in memory corruption under Microsoft Visual Studio. Examination of the memory reveals that the compiler prefixes the array allocation with four bytes, likely storing the count of array elements. This behavior varies depending on the compiler and class used.
Portable Solution
To address this portability issue, avoid using placement new directly on arrays. Instead, consider allocating each element of the array individually using placement new:
#include <iostream> #include <new> class A { public: A() : data(0) {} ~A() {} int data; }; int main() { const int NUMELEMENTS = 20; char *pBuffer = new char[NUMELEMENTS * sizeof(A)]; A *pA = (A*)pBuffer; for (int i = 0; i < NUMELEMENTS; ++i) { pA[i] = new (pA + i) A(); } std::cout << "Buffer address: " << pBuffer << ", Array address: " << pA << std::endl; // Remember to manually destroy each element for (int i = 0; i < NUMELEMENTS; ++i) { pA[i].~A(); } delete[] pBuffer; return 0; }
Regardless of the approach taken, manually destroying each array element before deleting the buffer is crucial to prevent memory leaks.
The above is the detailed content of Is Using Placement New on C Arrays Portable?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Yes, function overloading is a polymorphic form in C, specifically compile-time polymorphism. 1. Function overload allows multiple functions with the same name but different parameter lists. 2. The compiler decides which function to call at compile time based on the provided parameters. 3. Unlike runtime polymorphism, function overloading has no extra overhead at runtime, and is simple to implement but less flexible.

C has two main polymorphic types: compile-time polymorphism and run-time polymorphism. 1. Compilation-time polymorphism is implemented through function overloading and templates, providing high efficiency but may lead to code bloating. 2. Runtime polymorphism is implemented through virtual functions and inheritance, providing flexibility but performance overhead.

Yes, polymorphisms in C are very useful. 1) It provides flexibility to allow easy addition of new types; 2) promotes code reuse and reduces duplication; 3) simplifies maintenance, making the code easier to expand and adapt to changes. Despite performance and memory management challenges, its advantages are particularly significant in complex systems.

C destructorscanleadtoseveralcommonerrors.Toavoidthem:1)Preventdoubledeletionbysettingpointerstonullptrorusingsmartpointers.2)Handleexceptionsindestructorsbycatchingandloggingthem.3)Usevirtualdestructorsinbaseclassesforproperpolymorphicdestruction.4

People who study Python transfer to C The most direct confusion is: Why can't you write like Python? Because C, although the syntax is more complex, provides underlying control capabilities and performance advantages. 1. In terms of syntax structure, C uses curly braces {} instead of indentation to organize code blocks, and variable types must be explicitly declared; 2. In terms of type system and memory management, C does not have an automatic garbage collection mechanism, and needs to manually manage memory and pay attention to releasing resources. RAII technology can assist resource management; 3. In functions and class definitions, C needs to explicitly access modifiers, constructors and destructors, and supports advanced functions such as operator overloading; 4. In terms of standard libraries, STL provides powerful containers and algorithms, but needs to adapt to generic programming ideas; 5

Polymorphisms in C are divided into runtime polymorphisms and compile-time polymorphisms. 1. Runtime polymorphism is implemented through virtual functions, allowing the correct method to be called dynamically at runtime. 2. Compilation-time polymorphism is implemented through function overloading and templates, providing higher performance and flexibility.

C polymorphismincludescompile-time,runtime,andtemplatepolymorphism.1)Compile-timepolymorphismusesfunctionandoperatoroverloadingforefficiency.2)Runtimepolymorphismemploysvirtualfunctionsforflexibility.3)Templatepolymorphismenablesgenericprogrammingfo

C polymorphismisuniqueduetoitscombinationofcompile-timeandruntimepolymorphism,allowingforbothefficiencyandflexibility.Toharnessitspowerstylishly:1)Usesmartpointerslikestd::unique_ptrformemorymanagement,2)Ensurebaseclasseshavevirtualdestructors,3)Emp
