国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Home Backend Development Python Tutorial Semantic Matching of Text Identifiers Using LASER Embeddings in Python

Semantic Matching of Text Identifiers Using LASER Embeddings in Python

Nov 25, 2024 am 05:33 AM

Semantic Matching of Text Identifiers Using LASER Embeddings in Python

When using OCR to digitize financial reports, you may encounter various approaches for detecting specific categories within those reports. For example, traditional methods like the Levenshtein algorithm can be used for string matching based on edit distance, making it effective for handling near matches, such as correcting typos or small variations in text.

However, the challenge becomes more complex when you need to detect multiple categories in a single line of a report, especially when those categories may not appear exactly as expected or could overlap semantically.

In this post, we analyze a semantic matching approach using Facebook's LASER (Language-Agnostic SEntence Representations) embeddings, showcasing how it can effectively handle this task.

Problem

The objective is to identify specific financial terms (categories) in a given text line. Let’s assume we have a fixed set of predefined categories that represent all possible terms of interest, such as:

["revenues", "operating expenses", "operating profit", "depreciation", "interest", "net profit", "tax", "profit after tax", "metric 1"]

Given an input line like:

"operating profit, net profit and profit after tax"

We aim to detect which identifiers appear in this line.

Semantic Matching with LASER

Instead of relying on exact or fuzzy text matches, we use semantic similarity. This approach leverages LASER embeddings to capture the semantic meaning of text and compares it using cosine similarity.

Implementation

Preprocessing the Text

Before embedding, the text is preprocessed by converting it to lowercase and removing extra spaces. This ensures uniformity.

def preprocess(text):
    return text.lower().strip()

Embedding Identifiers and Input Line

The LASER encoder generates normalized embeddings for both the list of identifiers and the input/OCR line.

identifier_embeddings = encoder.encode_sentences(identifiers, normalize_embeddings=True)
ocr_line_embedding = encoder.encode_sentences([ocr_line], normalize_embeddings=True)[0]

Ranking Identifiers by Specificity

Longer identifiers are prioritized by sorting them based on word count. This helps handle nested matches, where longer identifiers might subsume shorter ones (e.g., "profit after tax" subsumes "profit").

ranked_identifiers = sorted(identifiers, key=lambda x: len(x.split()), reverse=True)
ranked_embeddings = encoder.encode_sentences(ranked_identifiers, normalize_embeddings=True)

Calculating Similarity

Using cosine similarity, we measure how semantically similar each identifier is to the input line. Identifiers with similarity above a specified threshold are considered matches.

matches = []
threshold = 0.6

for idx, identifier_embedding in enumerate(ranked_embeddings):
    similarity = cosine_similarity([identifier_embedding], [ocr_line_embedding])[0][0]
    if similarity >= threshold:
        matches.append((ranked_identifiers[idx], similarity))

Resolving Nested Matches

To handle overlapping identifiers, longer matches are prioritized, ensuring shorter matches within them are excluded.

def preprocess(text):
    return text.lower().strip()

Results

When the code is executed, the output provides a list of detected matches along with their similarity scores. For the example input:

identifier_embeddings = encoder.encode_sentences(identifiers, normalize_embeddings=True)
ocr_line_embedding = encoder.encode_sentences([ocr_line], normalize_embeddings=True)[0]

Considerations for Longer and Complex Inputs

This method works well in structured financial reports with multiple categories on a single line, provided there aren't too many categories or much unrelated text. However, accuracy can degrade with longer, complex inputs or unstructured user-generated text, as the embeddings may struggle to focus on relevant categories. It is less reliable for noisy or unpredictable inputs.

Conclusion

This post demonstrates how LASER embeddings can be a useful tool for detecting multiple categories in text. Is it the best option? Maybe not, but it is certainly one of the options worth considering, especially when dealing with complex scenarios where traditional matching techniques might fall short.

Full code

ranked_identifiers = sorted(identifiers, key=lambda x: len(x.split()), reverse=True)
ranked_embeddings = encoder.encode_sentences(ranked_identifiers, normalize_embeddings=True)

The above is the detailed content of Semantic Matching of Text Identifiers Using LASER Embeddings in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Polymorphism in python classes Polymorphism in python classes Jul 05, 2025 am 02:58 AM

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

Python `@classmethod` decorator explained Python `@classmethod` decorator explained Jul 04, 2025 am 03:26 AM

A class method is a method defined in Python through the @classmethod decorator. Its first parameter is the class itself (cls), which is used to access or modify the class state. It can be called through a class or instance, which affects the entire class rather than a specific instance; for example, in the Person class, the show_count() method counts the number of objects created; when defining a class method, you need to use the @classmethod decorator and name the first parameter cls, such as the change_var(new_value) method to modify class variables; the class method is different from the instance method (self parameter) and static method (no automatic parameters), and is suitable for factory methods, alternative constructors, and management of class variables. Common uses include:

What is list slicing in python? What is list slicing in python? Jun 29, 2025 am 02:15 AM

ListslicinginPythonextractsaportionofalistusingindices.1.Itusesthesyntaxlist[start:end:step],wherestartisinclusive,endisexclusive,andstepdefinestheinterval.2.Ifstartorendareomitted,Pythondefaultstothebeginningorendofthelist.3.Commonusesincludegetting

Python Function Arguments and Parameters Python Function Arguments and Parameters Jul 04, 2025 am 03:26 AM

Parameters are placeholders when defining a function, while arguments are specific values ??passed in when calling. 1. Position parameters need to be passed in order, and incorrect order will lead to errors in the result; 2. Keyword parameters are specified by parameter names, which can change the order and improve readability; 3. Default parameter values ??are assigned when defined to avoid duplicate code, but variable objects should be avoided as default values; 4. args and *kwargs can handle uncertain number of parameters and are suitable for general interfaces or decorators, but should be used with caution to maintain readability.

Explain Python generators and iterators. Explain Python generators and iterators. Jul 05, 2025 am 02:55 AM

Iterators are objects that implement __iter__() and __next__() methods. The generator is a simplified version of iterators, which automatically implement these methods through the yield keyword. 1. The iterator returns an element every time he calls next() and throws a StopIteration exception when there are no more elements. 2. The generator uses function definition to generate data on demand, saving memory and supporting infinite sequences. 3. Use iterators when processing existing sets, use a generator when dynamically generating big data or lazy evaluation, such as loading line by line when reading large files. Note: Iterable objects such as lists are not iterators. They need to be recreated after the iterator reaches its end, and the generator can only traverse it once.

How to combine two lists in python? How to combine two lists in python? Jun 30, 2025 am 02:04 AM

There are many ways to merge two lists, and choosing the right way can improve efficiency. 1. Use number splicing to generate a new list, such as list1 list2; 2. Use = to modify the original list, such as list1 =list2; 3. Use extend() method to operate on the original list, such as list1.extend(list2); 4. Use number to unpack and merge (Python3.5), such as [list1,*list2], which supports flexible combination of multiple lists or adding elements. Different methods are suitable for different scenarios, and you need to choose based on whether to modify the original list and Python version.

How to handle API authentication in Python How to handle API authentication in Python Jul 13, 2025 am 02:22 AM

The key to dealing with API authentication is to understand and use the authentication method correctly. 1. APIKey is the simplest authentication method, usually placed in the request header or URL parameters; 2. BasicAuth uses username and password for Base64 encoding transmission, which is suitable for internal systems; 3. OAuth2 needs to obtain the token first through client_id and client_secret, and then bring the BearerToken in the request header; 4. In order to deal with the token expiration, the token management class can be encapsulated and automatically refreshed the token; in short, selecting the appropriate method according to the document and safely storing the key information is the key.

What are Python magic methods or dunder methods? What are Python magic methods or dunder methods? Jul 04, 2025 am 03:20 AM

Python's magicmethods (or dunder methods) are special methods used to define the behavior of objects, which start and end with a double underscore. 1. They enable objects to respond to built-in operations, such as addition, comparison, string representation, etc.; 2. Common use cases include object initialization and representation (__init__, __repr__, __str__), arithmetic operations (__add__, __sub__, __mul__) and comparison operations (__eq__, ___lt__); 3. When using it, make sure that their behavior meets expectations. For example, __repr__ should return expressions of refactorable objects, and arithmetic methods should return new instances; 4. Overuse or confusing things should be avoided.

See all articles