Pydantic is a data validation and settings management library for Python. It uses Python type hints to validate and parse data, ensuring that your code works with properly structured and typed data. By leveraging Python’s dataclass-like model structure, Pydantic makes it easy to define schemas for complex data and automatically validate and serialize/deserialize data in a clean, Pythonic way. Let's explore the main features:
Data Validation
Automatically validate input data against a schema using Python's type hints.
from pydantic import BaseModel, ValidationError class User(BaseModel): id: int name: str email: str # Valid input user = User(id=1, name="John Doe", email="john@example.com") print(user) # Invalid input try: user = User(id="not-an-integer", name="Jane", email="jane@example.com") except ValidationError as err: print(err)
Whenever you want to define data model, use pydantic.BaseModel!
Function Validation
Pydantic provides powerful tools for validating not just data models but also the input and output of functions. This is achieved using the @validate_call decorator, allowing you to enforce strict data validation for function arguments and return values. If the provided arguments or return type don’t match the expected types, a ValidationError is raised.
from pydantic import validate_call @validate_call def greet(name: str, age: int) -> str: return f"Hello {name}, you are {age} years old." # Valid input print(greet("Alice", 30)) # Output: Hello Alice, you are 30 years old. # Invalid input try: greet("Bob", "not-a-number") except Exception as e: print(e)
By enabling the validate_return flag in @validate_call, Pydantic will also validate the return value of the function against its annotated return type. This ensures the function adheres to the expected output schema.
from pydantic import validate_call @validate_call(validate_return=True) def calculate_square(number: int) -> int: return number ** 2 # Correct return type # Valid input and return print(calculate_square(4)) # Output: 16 # Invalid return value @validate_call(validate_return=True) def broken_square(number: int) -> int: return str(number ** 2) # Incorrect return type try: broken_square(4) except Exception as e: print(e)
Parsing
Pydantic can parse complex nested structures, including JSON data, into model objects.
from pydantic import BaseModel from typing import List class Item(BaseModel): name: str price: float class Order(BaseModel): items: List[Item] total: float # JSON-like data data = { "items": [ {"name": "Apple", "price": 1.2}, {"name": "Banana", "price": 0.8} ], "total": 2.0 } order = Order(**data) print(order) # items=[Item(name='Apple', price=1.2), Item(name='Banana', price=0.8)] total=2.0
Serialization and Deserialization
Pydantic models can be serialized into JSON or dictionaries and reconstructed back.
from pydantic import BaseModel class User(BaseModel): id: int name: str email: str # Create a model instance user = User(id=1, name="Alice", email="alice@example.com") # Serialize to dictionary and JSON user_dict = user.model_dump() user_json = user.model_dump(mode='json') print("Dictionary:", user_dict) print("JSON:", user_json) # Deserialize back to the model new_user = User.model_validate(user_json) print("Parsed User:", new_user)
Flexible Validation
Data validation is not force-type validation. For example, if you define a model with id, due_date, and priority fields of types int, bool, and datetime respectively, you can pass:
- numerical string as id
- ISO-8601, UTC or strings of the other date formats as due_date
- 'yes'/'no', 'on'/'off', 'true'/'false', 1/0 etc. as priority
from sensei import APIModel from datetime import datetime class Task(APIModel): id: int due_date: datetime priority: bool task = Task(due_date='2024-10-15T15:30:00',> <p>The result will be<br> </p> <pre class="brush:php;toolbar:false">Task(id=1, due_date=datetime.datetime(2024, 10, 15, 15, 30), priority=True)
Custom Validation
You can also define custom validation logic in your model using validators. They allow you to apply more complex validation rules that cannot be easily expressed using the built-in types or field constraints. Validator is defined through the field_validator decorator or Field object. You can pass one or more field names to field_validator, to determine what fields will use this validator, or '*' to apply validator for every field.
from typing import Any from pydantic import Field, field_validator, EmailStr, BaseModel class User(BaseModel): id: int username: str = Field(pattern=r'^w $') email: EmailStr age: int = Field(18, ge=14) is_active: bool = True roles: list[str] # Define validator executed 'before' internal parsing @field_validator('roles', mode='before') def _validate_roles(cls, value: Any): return value.split(',') if isinstance(value, str) else value user = User(id=1, username='john', email='john@example.com', roles='student,singer') print(user) #> <h2> Open-source Projects </h2> <p>There are a lot of open-source projects powered by Pydantic. Let's explore the best of them:</p> <h3> FastAPI </h3> <p>One of the most prominent use cases of Pydantic is in FastAPI, a modern web framework for building APIs with Python. FastAPI uses Pydantic models extensively for request body validation, query parameters, and response schemas.</p>
- Source: https://github.com/fastapi/fastapi
- Docs: https://fastapi.tiangolo.com
Sensei
While FastAPI is designed for building APIs, Sensei is designed for wrapping these APIs quickly and easy. API Clients powered by Sensei ensure users they will get relevant data models and will not get confusing errors.
- Source: https://github.com/CrocoFactory/sensei
- Docs: https://sensei.crocofactory.dev
SQLModel and Typer
SQLModel and Typer are two remarkable projects developed by Sebastián Ramírez, the creator of FastAPI.
SQLModel is a library designed to streamline database interactions in Python applications. Built on top of SQLAlchemy and Pydantic, SQLModel combines the power of an ORM with the convenience of data validation and serialization.
- Source: https://github.com/fastapi/sqlmodel
- Docs: https://sqlmodel.tiangolo.com
Typer is a framework for creating command-line interface (CLI) applications using Python. It simplifies the process by using Python's type hints to automatically generate user-friendly CLI commands and help text.
- Source: https://github.com/fastapi/typer
- Docs: https://typer.tiangolo.com
The above is the detailed content of Pydantic: The end of manual validations! ?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Python's unittest and pytest are two widely used testing frameworks that simplify the writing, organizing and running of automated tests. 1. Both support automatic discovery of test cases and provide a clear test structure: unittest defines tests by inheriting the TestCase class and starting with test\_; pytest is more concise, just need a function starting with test\_. 2. They all have built-in assertion support: unittest provides assertEqual, assertTrue and other methods, while pytest uses an enhanced assert statement to automatically display the failure details. 3. All have mechanisms for handling test preparation and cleaning: un

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

Dynamic programming (DP) optimizes the solution process by breaking down complex problems into simpler subproblems and storing their results to avoid repeated calculations. There are two main methods: 1. Top-down (memorization): recursively decompose the problem and use cache to store intermediate results; 2. Bottom-up (table): Iteratively build solutions from the basic situation. Suitable for scenarios where maximum/minimum values, optimal solutions or overlapping subproblems are required, such as Fibonacci sequences, backpacking problems, etc. In Python, it can be implemented through decorators or arrays, and attention should be paid to identifying recursive relationships, defining the benchmark situation, and optimizing the complexity of space.

To implement a custom iterator, you need to define the __iter__ and __next__ methods in the class. ① The __iter__ method returns the iterator object itself, usually self, to be compatible with iterative environments such as for loops; ② The __next__ method controls the value of each iteration, returns the next element in the sequence, and when there are no more items, StopIteration exception should be thrown; ③ The status must be tracked correctly and the termination conditions must be set to avoid infinite loops; ④ Complex logic such as file line filtering, and pay attention to resource cleaning and memory management; ⑤ For simple logic, you can consider using the generator function yield instead, but you need to choose a suitable method based on the specific scenario.

Future trends in Python include performance optimization, stronger type prompts, the rise of alternative runtimes, and the continued growth of the AI/ML field. First, CPython continues to optimize, improving performance through faster startup time, function call optimization and proposed integer operations; second, type prompts are deeply integrated into languages ??and toolchains to enhance code security and development experience; third, alternative runtimes such as PyScript and Nuitka provide new functions and performance advantages; finally, the fields of AI and data science continue to expand, and emerging libraries promote more efficient development and integration. These trends indicate that Python is constantly adapting to technological changes and maintaining its leading position.

Python's socket module is the basis of network programming, providing low-level network communication functions, suitable for building client and server applications. To set up a basic TCP server, you need to use socket.socket() to create objects, bind addresses and ports, call .listen() to listen for connections, and accept client connections through .accept(). To build a TCP client, you need to create a socket object and call .connect() to connect to the server, then use .sendall() to send data and .recv() to receive responses. To handle multiple clients, you can use 1. Threads: start a new thread every time you connect; 2. Asynchronous I/O: For example, the asyncio library can achieve non-blocking communication. Things to note

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

The core answer to Python list slicing is to master the [start:end:step] syntax and understand its behavior. 1. The basic format of list slicing is list[start:end:step], where start is the starting index (included), end is the end index (not included), and step is the step size; 2. Omit start by default start from 0, omit end by default to the end, omit step by default to 1; 3. Use my_list[:n] to get the first n items, and use my_list[-n:] to get the last n items; 4. Use step to skip elements, such as my_list[::2] to get even digits, and negative step values ??can invert the list; 5. Common misunderstandings include the end index not
