国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Home Backend Development Golang How to Stop DDoS Attacks in Go with Rate Limiting

How to Stop DDoS Attacks in Go with Rate Limiting

Nov 30, 2024 am 01:22 AM

How to Stop DDoS Attacks in Go with Rate Limiting

Rate limiting is one of the most effective techniques to mitigate DDoS attacks. Among its variations, per-IP rate limiting stands out for its targeted approach: it enforces request limits individually for each client, based on their IP address. This prevents any single user from overwhelming the server while maintaining a fair level of access for legitimate users.

In this article, we’ll cover how per-IP rate limiting works, why it is one of the best strategies to stop DDoS attacks, and how to implement it in Go using the rate package.

Why Rate Limiting

Rate limiting is widely used because it balances security and usability. Here’s why it’s a preferred approach:

  1. Efficient Resource Management: By limiting the number of requests from each client, servers can avoid being overwhelmed, even during an attack.
  2. Fairness: Legitimate users can continue to access the server while malicious clients are throttled.
  3. Customizable: Rate limits can be adjusted based on use cases, such as different limits for public APIs versus private services.
  4. Scalability: Rate limiting mechanisms scale well with modern infrastructure, especially when combined with load balancers or reverse proxies.

How it Compares to Other Techniques

  1. Firewall Rules: Block traffic at the network level based on predefined rules. While effective for large-scale filtering, it’s less flexible and can block legitimate users during false positives.
  2. Content Delivery Networks (CDNs): Distribute traffic across multiple servers. While great for reducing the impact of DDoS, CDNs don’t address abusive traffic at the application level.
  3. Proof of Work (PoW): Requires clients to solve computational puzzles before accessing the server. Effective but adds latency for legitimate users and can be resource-intensive for clients.
  4. Rate Limiting: Offers fine-grained control, scales well, and doesn’t add significant overhead. It’s often the best choice for protecting application-level endpoints.

Implementation

In per-IP rate limiting, a separate limiter is maintained for each client IP. Here’s how to implement it using the golang.org/x/time/rate package.

Step 1: Install the Required Package

The rate package is part of Go’s extended modules. Install it with:

bash

go get golang.org/x/time/rate

Step 2: Code the Per-IP Rate Limiter

go

package main

import (

`"fmt"`

`"net/http"`

`"sync"`

`"time"`

`"golang.org/x/time/rate"`

)

var (

`mu       sync.Mutex`

`visitors = make(map[string]*rate.Limiter)`

)

// getVisitor retrieves the rate limiter for a given IP, creating one if it doesn't exist.

func getVisitor(ip string) *rate.Limiter {

`mu.Lock()`

`defer mu.Unlock()`

`limiter, exists := visitors[ip]`

`if !exists {`

    `limiter = rate.NewLimiter(1, 5) // 1 request/second, burst of 5`

    `visitors[ip] = limiter`

    `// Clean up limiter after 1 minute of inactivity`

    `go func() {`

        `time.Sleep(1 * time.Minute)`

        `mu.Lock()`

        `delete(visitors, ip)`

        `mu.Unlock()`

    `}()`

`}`

`return limiter`

}

// rateLimitedHandler applies the per-IP rate limit

func rateLimitedHandler(w http.ResponseWriter, r *http.Request) {

`ip := r.RemoteAddr`

`limiter := getVisitor(ip)`

`if !limiter.Allow() {`

    `http.Error(w, "Too many requests. Please try again later.", http.StatusTooManyRequests)`

    `return`

`}`

`fmt.Fprintln(w, "Request successful.")`

}

func main() {

`http.HandleFunc("/", rateLimitedHandler)`

`fmt.Println("Starting server on :8080")`

`http.ListenAndServe(":8080", nil)`

}

Explanation

  1. Visitors Map: Maintains a rate.Limiter for each IP address. The visitors map holds these limiters, keyed by IP addresses (r.RemoteAddr). When a request comes in, the getVisitor function checks if a limiter already exists for the IP.
  2. Limiter Creation: Each limiter allows 1 request per second with a burst of 5. A a new limiter is created with specific rules (1 request per second with a burst capacity of 5) if one doesn’t exist. The limiter allows some initial burst of requests but enforces a steady rate thereafter.
  3. Automatic Cleanup: A goroutine cleans up idle limiters after 1 minute to save memory.To prevent memory growth, the code includes a cleanup mechanism. A goroutine is started whenever a new limiter is created, and it waits for 1 minute of inactivity before removing the corresponding entry from the visitors map. This ensures that limiters are only kept for active clients.
  4. Rate Limiting Logic: The handler checks if the limiter allows the request. If the request exceeds the defined limit, it responds with a 429 Too Many Requests error; otherwise, it processes the request.

Per-IP rate limiting in Go is an excellent way to mitigate DDoS attacks at the application level. It provides precise control over traffic, ensuring that legitimate users can access your service while malicious users are effectively throttled.

This approach efficiently throttles abusive IPs without impacting legitimate users, offering a scalable and memory-efficient solution for mitigating DDoS attacks.

The above is the detailed content of How to Stop DDoS Attacks in Go with Rate Limiting. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What are the implications of Go's static linking by default? What are the implications of Go's static linking by default? Jun 19, 2025 am 01:08 AM

Go compiles the program into a standalone binary by default, the main reason is static linking. 1. Simpler deployment: no additional installation of dependency libraries, can be run directly across Linux distributions; 2. Larger binary size: Including all dependencies causes file size to increase, but can be optimized through building flags or compression tools; 3. Higher predictability and security: avoid risks brought about by changes in external library versions and enhance stability; 4. Limited operation flexibility: cannot hot update of shared libraries, and recompile and deployment are required to fix dependency vulnerabilities. These features make Go suitable for CLI tools, microservices and other scenarios, but trade-offs are needed in environments where storage is restricted or relies on centralized management.

How does Go ensure memory safety without manual memory management like in C? How does Go ensure memory safety without manual memory management like in C? Jun 19, 2025 am 01:11 AM

Goensuresmemorysafetywithoutmanualmanagementthroughautomaticgarbagecollection,nopointerarithmetic,safeconcurrency,andruntimechecks.First,Go’sgarbagecollectorautomaticallyreclaimsunusedmemory,preventingleaksanddanglingpointers.Second,itdisallowspointe

How do I create a buffered channel in Go? (e.g., make(chan int, 10)) How do I create a buffered channel in Go? (e.g., make(chan int, 10)) Jun 20, 2025 am 01:07 AM

To create a buffer channel in Go, just specify the capacity parameters in the make function. The buffer channel allows the sending operation to temporarily store data when there is no receiver, as long as the specified capacity is not exceeded. For example, ch:=make(chanint,10) creates a buffer channel that can store up to 10 integer values; unlike unbuffered channels, data will not be blocked immediately when sending, but the data will be temporarily stored in the buffer until it is taken away by the receiver; when using it, please note: 1. The capacity setting should be reasonable to avoid memory waste or frequent blocking; 2. The buffer needs to prevent memory problems from being accumulated indefinitely in the buffer; 3. The signal can be passed by the chanstruct{} type to save resources; common scenarios include controlling the number of concurrency, producer-consumer models and differentiation

How can you use Go for system programming tasks? How can you use Go for system programming tasks? Jun 19, 2025 am 01:10 AM

Go is ideal for system programming because it combines the performance of compiled languages ??such as C with the ease of use and security of modern languages. 1. In terms of file and directory operations, Go's os package supports creation, deletion, renaming and checking whether files and directories exist. Use os.ReadFile to read the entire file in one line of code, which is suitable for writing backup scripts or log processing tools; 2. In terms of process management, the exec.Command function of the os/exec package can execute external commands, capture output, set environment variables, redirect input and output flows, and control process life cycles, which are suitable for automation tools and deployment scripts; 3. In terms of network and concurrency, the net package supports TCP/UDP programming, DNS query and original sets.

How do I call a method on a struct instance in Go? How do I call a method on a struct instance in Go? Jun 24, 2025 pm 03:17 PM

In Go language, calling a structure method requires first defining the structure and the method that binds the receiver, and accessing it using a point number. After defining the structure Rectangle, the method can be declared through the value receiver or the pointer receiver; 1. Use the value receiver such as func(rRectangle)Area()int and directly call it through rect.Area(); 2. If you need to modify the structure, use the pointer receiver such as func(r*Rectangle)SetWidth(...), and Go will automatically handle the conversion of pointers and values; 3. When embedding the structure, the method of embedded structure will be improved, and it can be called directly through the outer structure; 4. Go does not need to force use getter/setter,

What are interfaces in Go, and how do I define them? What are interfaces in Go, and how do I define them? Jun 22, 2025 pm 03:41 PM

In Go, an interface is a type that defines behavior without specifying implementation. An interface consists of method signatures, and any type that implements these methods automatically satisfy the interface. For example, if you define a Speaker interface that contains the Speak() method, all types that implement the method can be considered Speaker. Interfaces are suitable for writing common functions, abstract implementation details, and using mock objects in testing. Defining an interface uses the interface keyword and lists method signatures, without explicitly declaring the type to implement the interface. Common use cases include logs, formatting, abstractions of different databases or services, and notification systems. For example, both Dog and Robot types can implement Speak methods and pass them to the same Anno

How do I use string functions from the strings package in Go? (e.g., len(), strings.Contains(), strings.Index(), strings.ReplaceAll()) How do I use string functions from the strings package in Go? (e.g., len(), strings.Contains(), strings.Index(), strings.ReplaceAll()) Jun 20, 2025 am 01:06 AM

In Go language, string operations are mainly implemented through strings package and built-in functions. 1.strings.Contains() is used to determine whether a string contains a substring and returns a Boolean value; 2.strings.Index() can find the location where the substring appears for the first time, and if it does not exist, it returns -1; 3.strings.ReplaceAll() can replace all matching substrings, and can also control the number of replacements through strings.Replace(); 4.len() function is used to obtain the length of the bytes of the string, but when processing Unicode, you need to pay attention to the difference between characters and bytes. These functions are often used in scenarios such as data filtering, text parsing, and string processing.

How do I use the io package to work with input and output streams in Go? How do I use the io package to work with input and output streams in Go? Jun 20, 2025 am 11:25 AM

TheGoiopackageprovidesinterfaceslikeReaderandWritertohandleI/Ooperationsuniformlyacrosssources.1.io.Reader'sReadmethodenablesreadingfromvarioussourcessuchasfilesorHTTPresponses.2.io.Writer'sWritemethodfacilitateswritingtodestinationslikestandardoutpu

See all articles