国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Home Backend Development Python Tutorial Tutorial: Create Your Own AI Study Buddy

Tutorial: Create Your Own AI Study Buddy

Dec 03, 2024 pm 07:36 PM

Tutorial: Create Your Own AI Study Buddy

Ever feel overwhelmed while learning something new? Like you're drowning in information but not actually absorbing anything? We've all been there. Wouldn't it be awesome to have a personalized study companion that understands your level and explains things in a way that clicks? That's exactly what we're going to build together.

This tutorial will show you how to combine the BotHub API with PyQt5 to create an interactive and adaptable learning tool. It's not just another chatbot; it's more like a personal tutor, available 24/7.

Prepping Your Workspace

Before we start building, let's gather our tools. We'll need a few key Python libraries:

import os
import datetime
import json
from dataclasses import dataclass
from typing import List, Dict
from openai import OpenAI
from dotenv import load_dotenv
from PyQt5.QtCore import Qt, QThread, pyqtSignal
from PyQt5.QtGui import QMovie
from PyQt5.QtWidgets import (QApplication, QWidget, QVBoxLayout, QHBoxLayout, QLabel, QLineEdit, QTextEdit, QRadioButton, QButtonGroup, QPushButton, QGroupBox, QListWidget, QListWidgetItem, QTabWidget, QFileDialog, QComboBox, QCheckBox, QMessageBox, QDialogButtonBox, QSpinBox, QFormLayout, QDialog, QDateEdit)

Think of these libraries as different parts of your toolkit. Some handle the basics, like file management (os), timekeeping (datetime), and data handling (json). Others, like dataclasses and typing, help us write clean, organized code. The real magic happens with openai, which lets us tap into the power of AI. dotenv keeps our sensitive information (like API keys) secure. And finally, PyQt5 helps us create a beautiful and intuitive user interface.

Crafting User Requests

To communicate with our AI, we'll create a UserRequest class. This helps organize the information the user provides:

@dataclass
class UserRequest:
   query: str
   user_level: str
   preferences: Dict

Using the handy @dataclass decorator, we define three key pieces of information: the user's query (what they're asking), their user_level (beginner, intermediate, or advanced), and their preferences (like how long they want the response to be). This neatly packages everything into a single object.

Remembering User Sessions

To make the learning experience truly personalized, we need to remember what the user has done and how they like to learn. That's where the UserSession class comes in:

class UserSession:
   def __init__(self):
       self.history: List[Dict] = []
       self.preferences: Dict = {}
       self.level: str = "beginner"


   def add_to_history(self, query, response):
       self.history.append({"query": query, "response": response, "timestamp": datetime.datetime.now().isoformat()})


   def update_preferences(self, new_preferences):
       self.preferences.update(new_preferences)

A UserSession keeps track of the conversation history, the user's preferences, and their current level. It's like having a dedicated assistant who remembers everything and adapts to the user's needs.

The Brains of the Operation: EducationalAssistant

The EducationalAssistant class is the heart of our application. It's responsible for interacting with the BotHub API:

class EducationalAssistant:
   def __init__(self):
       load_dotenv()
       self.client = OpenAI(api_key=os.getenv('BOTHUB_API_KEY'), base_url='https://bothub.chat/api/v2/openai/v1')
       self.session = UserSession()


   def generate_prompt(self, request):
       prompt = f"""As an educational assistant, provide a response for a {request.user_level} level student.
       Query: {request.query}\n"""


       if request.preferences:
           prompt += "Consider these preferences:\n"
           for key, value in request.preferences.items():
               if key == "response_length":
                   prompt += f"Desired Length: Approximately {value} words\n"
               elif key == "include_examples" and value:
                   prompt += "Include Examples: Yes\n"
               else:
                   prompt += f"{key.capitalize()}: {value}\n"


       prompt += "Please provide a detailed explanation."
       return prompt
   def generate_text_response(self, request):
       try:
           response = self.client.chat.completions.create(
               model="claude-3.5-sonnet", // u can use any model in "Models available" on BotHub
               messages=[
                   {"role": "system", "content": "You are an educational assistant."},
                   {"role": "user", "content": self.generate_prompt(request)}
               ]
           )
           return response.choices[0].message.content
       except Exception as e:
           return f"Error generating text response: {e}"

This class handles a few crucial tasks. First, it initializes the connection to BotHub using your API key (we talked about it previously). It also sets up a UserSession to keep track of the interaction. The generate_prompt method takes the user's request and transforms it into a prompt the API can understand. Finally, generate_text_response sends the prompt to the API and retrieves the AI-generated answer.

Smooth and Responsive: GenerateResponseThread

To avoid making the user wait while the AI is thinking, we'll use a separate thread for API calls:

import os
import datetime
import json
from dataclasses import dataclass
from typing import List, Dict
from openai import OpenAI
from dotenv import load_dotenv
from PyQt5.QtCore import Qt, QThread, pyqtSignal
from PyQt5.QtGui import QMovie
from PyQt5.QtWidgets import (QApplication, QWidget, QVBoxLayout, QHBoxLayout, QLabel, QLineEdit, QTextEdit, QRadioButton, QButtonGroup, QPushButton, QGroupBox, QListWidget, QListWidgetItem, QTabWidget, QFileDialog, QComboBox, QCheckBox, QMessageBox, QDialogButtonBox, QSpinBox, QFormLayout, QDialog, QDateEdit)

This GenerateResponseThread, based on PyQt5's QThread, runs the API request in the background, ensuring that the user interface remains responsive.

Personalizing the Experience

Everyone learns differently. To cater to individual preferences, we'll create a PreferencesDialog:

@dataclass
class UserRequest:
   query: str
   user_level: str
   preferences: Dict

This dialog allows users to customize settings like the AI's tone of voice, the desired response length, and whether to include examples. This level of customization ensures a more engaging and effective learning experience.

Building the Interface

Finally, let's create the user interface with the EducationalAssistantGUI class:

class UserSession:
   def __init__(self):
       self.history: List[Dict] = []
       self.preferences: Dict = {}
       self.level: str = "beginner"


   def add_to_history(self, query, response):
       self.history.append({"query": query, "response": response, "timestamp": datetime.datetime.now().isoformat()})


   def update_preferences(self, new_preferences):
       self.preferences.update(new_preferences)

This class builds the main window, which includes two tabs: "Chat" and "History." The "Chat" tab allows users to enter their queries, select their level, and see the AI's responses. The "History" tab displays past conversations, offering search and export functionalities.

Launching Your AI Study Buddy

Now, let's bring our creation to life:

class EducationalAssistant:
   def __init__(self):
       load_dotenv()
       self.client = OpenAI(api_key=os.getenv('BOTHUB_API_KEY'), base_url='https://bothub.chat/api/v2/openai/v1')
       self.session = UserSession()


   def generate_prompt(self, request):
       prompt = f"""As an educational assistant, provide a response for a {request.user_level} level student.
       Query: {request.query}\n"""


       if request.preferences:
           prompt += "Consider these preferences:\n"
           for key, value in request.preferences.items():
               if key == "response_length":
                   prompt += f"Desired Length: Approximately {value} words\n"
               elif key == "include_examples" and value:
                   prompt += "Include Examples: Yes\n"
               else:
                   prompt += f"{key.capitalize()}: {value}\n"


       prompt += "Please provide a detailed explanation."
       return prompt
   def generate_text_response(self, request):
       try:
           response = self.client.chat.completions.create(
               model="claude-3.5-sonnet", // u can use any model in "Models available" on BotHub
               messages=[
                   {"role": "system", "content": "You are an educational assistant."},
                   {"role": "user", "content": self.generate_prompt(request)}
               ]
           )
           return response.choices[0].message.content
       except Exception as e:
           return f"Error generating text response: {e}"

Congratulations! You've built your own personalized AI learning assistant.


Now that you have a working app, think about how you could make it even better! The BotHub API offers a lot of flexibility. Instead of just text responses, you could integrate image generation or speech transcription. BotHub also gives you access to multiple AI models, allowing you to choose the best one for different tasks. Imagine your assistant being able to summarize complex topics, translate languages, or even generate practice quizzes! The possibilities are vast. You've built a solid foundation; now go forth and explore!

The above is the detailed content of Tutorial: Create Your Own AI Study Buddy. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How does Python's unittest or pytest framework facilitate automated testing? How does Python's unittest or pytest framework facilitate automated testing? Jun 19, 2025 am 01:10 AM

Python's unittest and pytest are two widely used testing frameworks that simplify the writing, organizing and running of automated tests. 1. Both support automatic discovery of test cases and provide a clear test structure: unittest defines tests by inheriting the TestCase class and starting with test\_; pytest is more concise, just need a function starting with test\_. 2. They all have built-in assertion support: unittest provides assertEqual, assertTrue and other methods, while pytest uses an enhanced assert statement to automatically display the failure details. 3. All have mechanisms for handling test preparation and cleaning: un

How can Python be used for data analysis and manipulation with libraries like NumPy and Pandas? How can Python be used for data analysis and manipulation with libraries like NumPy and Pandas? Jun 19, 2025 am 01:04 AM

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

What are dynamic programming techniques, and how do I use them in Python? What are dynamic programming techniques, and how do I use them in Python? Jun 20, 2025 am 12:57 AM

Dynamic programming (DP) optimizes the solution process by breaking down complex problems into simpler subproblems and storing their results to avoid repeated calculations. There are two main methods: 1. Top-down (memorization): recursively decompose the problem and use cache to store intermediate results; 2. Bottom-up (table): Iteratively build solutions from the basic situation. Suitable for scenarios where maximum/minimum values, optimal solutions or overlapping subproblems are required, such as Fibonacci sequences, backpacking problems, etc. In Python, it can be implemented through decorators or arrays, and attention should be paid to identifying recursive relationships, defining the benchmark situation, and optimizing the complexity of space.

How can you implement custom iterators in Python using __iter__ and __next__? How can you implement custom iterators in Python using __iter__ and __next__? Jun 19, 2025 am 01:12 AM

To implement a custom iterator, you need to define the __iter__ and __next__ methods in the class. ① The __iter__ method returns the iterator object itself, usually self, to be compatible with iterative environments such as for loops; ② The __next__ method controls the value of each iteration, returns the next element in the sequence, and when there are no more items, StopIteration exception should be thrown; ③ The status must be tracked correctly and the termination conditions must be set to avoid infinite loops; ④ Complex logic such as file line filtering, and pay attention to resource cleaning and memory management; ⑤ For simple logic, you can consider using the generator function yield instead, but you need to choose a suitable method based on the specific scenario.

What are the emerging trends or future directions in the Python programming language and its ecosystem? What are the emerging trends or future directions in the Python programming language and its ecosystem? Jun 19, 2025 am 01:09 AM

Future trends in Python include performance optimization, stronger type prompts, the rise of alternative runtimes, and the continued growth of the AI/ML field. First, CPython continues to optimize, improving performance through faster startup time, function call optimization and proposed integer operations; second, type prompts are deeply integrated into languages ??and toolchains to enhance code security and development experience; third, alternative runtimes such as PyScript and Nuitka provide new functions and performance advantages; finally, the fields of AI and data science continue to expand, and emerging libraries promote more efficient development and integration. These trends indicate that Python is constantly adapting to technological changes and maintaining its leading position.

How do I perform network programming in Python using sockets? How do I perform network programming in Python using sockets? Jun 20, 2025 am 12:56 AM

Python's socket module is the basis of network programming, providing low-level network communication functions, suitable for building client and server applications. To set up a basic TCP server, you need to use socket.socket() to create objects, bind addresses and ports, call .listen() to listen for connections, and accept client connections through .accept(). To build a TCP client, you need to create a socket object and call .connect() to connect to the server, then use .sendall() to send data and .recv() to receive responses. To handle multiple clients, you can use 1. Threads: start a new thread every time you connect; 2. Asynchronous I/O: For example, the asyncio library can achieve non-blocking communication. Things to note

Polymorphism in python classes Polymorphism in python classes Jul 05, 2025 am 02:58 AM

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

How do I slice a list in Python? How do I slice a list in Python? Jun 20, 2025 am 12:51 AM

The core answer to Python list slicing is to master the [start:end:step] syntax and understand its behavior. 1. The basic format of list slicing is list[start:end:step], where start is the starting index (included), end is the end index (not included), and step is the step size; 2. Omit start by default start from 0, omit end by default to the end, omit step by default to 1; 3. Use my_list[:n] to get the first n items, and use my_list[-n:] to get the last n items; 4. Use step to skip elements, such as my_list[::2] to get even digits, and negative step values ??can invert the list; 5. Common misunderstandings include the end index not

See all articles