Can Templated C Classes Be Split into .hpp and .cpp Files?
Dec 22, 2024 am 05:49 AMSplitting Templated C Classes into .hpp/.cpp Files: Is It Possible?
Problem:
Attempting to split a templated C class into .hpp and .cpp files results in compilation errors due to undefined references to constructor and destructor symbols.
main.cpp:(.text+0xe): undefined reference to 'stack<int>::stack()' main.cpp:(.text+0x1c): undefined reference to 'stack<int>::~stack()'
Code:
stack.hpp
#ifndef _STACK_HPP #define _STACK_HPP template <typename Type> class stack { public: stack(); ~stack(); }; #endif
stack.cpp
#include <iostream> #include "stack.hpp" template <typename Type> stack<Type>::stack() { std::cerr << "Hello, stack " << this << "!" << std::endl; } template <typename Type> stack<Type>::~stack() { std::cerr << "Goodbye, stack " << this << "." << std::endl; }
main.cpp
#include "stack.hpp" int main() { stack<int> s; return 0; }
Answer:
It is not feasible to implement templated classes in a separate .cpp file and compile them. The implementation must be included in the .hpp file because the compiler requires knowledge of the data type when generating memory layout and method definitions for template classes. Attempting to compile the .cpp file independently will result in the following issues:
- The object file will not be generated with the class information.
- The linker will not find the symbols in the object files, and the build will fail.
Alternative Solution:
To hide implementation details, consider separating data structures and algorithms. Create templated classes to represent data structures, while non-templatized classes handle the algorithms and utilize the data structures. This enables the concealment of essential implementation details in separate libraries without relying on template classes.
The above is the detailed content of Can Templated C Classes Be Split into .hpp and .cpp Files?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Yes, function overloading is a polymorphic form in C, specifically compile-time polymorphism. 1. Function overload allows multiple functions with the same name but different parameter lists. 2. The compiler decides which function to call at compile time based on the provided parameters. 3. Unlike runtime polymorphism, function overloading has no extra overhead at runtime, and is simple to implement but less flexible.

C has two main polymorphic types: compile-time polymorphism and run-time polymorphism. 1. Compilation-time polymorphism is implemented through function overloading and templates, providing high efficiency but may lead to code bloating. 2. Runtime polymorphism is implemented through virtual functions and inheritance, providing flexibility but performance overhead.

Yes, polymorphisms in C are very useful. 1) It provides flexibility to allow easy addition of new types; 2) promotes code reuse and reduces duplication; 3) simplifies maintenance, making the code easier to expand and adapt to changes. Despite performance and memory management challenges, its advantages are particularly significant in complex systems.

C destructorscanleadtoseveralcommonerrors.Toavoidthem:1)Preventdoubledeletionbysettingpointerstonullptrorusingsmartpointers.2)Handleexceptionsindestructorsbycatchingandloggingthem.3)Usevirtualdestructorsinbaseclassesforproperpolymorphicdestruction.4

People who study Python transfer to C The most direct confusion is: Why can't you write like Python? Because C, although the syntax is more complex, provides underlying control capabilities and performance advantages. 1. In terms of syntax structure, C uses curly braces {} instead of indentation to organize code blocks, and variable types must be explicitly declared; 2. In terms of type system and memory management, C does not have an automatic garbage collection mechanism, and needs to manually manage memory and pay attention to releasing resources. RAII technology can assist resource management; 3. In functions and class definitions, C needs to explicitly access modifiers, constructors and destructors, and supports advanced functions such as operator overloading; 4. In terms of standard libraries, STL provides powerful containers and algorithms, but needs to adapt to generic programming ideas; 5

Polymorphisms in C are divided into runtime polymorphisms and compile-time polymorphisms. 1. Runtime polymorphism is implemented through virtual functions, allowing the correct method to be called dynamically at runtime. 2. Compilation-time polymorphism is implemented through function overloading and templates, providing higher performance and flexibility.

C polymorphismincludescompile-time,runtime,andtemplatepolymorphism.1)Compile-timepolymorphismusesfunctionandoperatoroverloadingforefficiency.2)Runtimepolymorphismemploysvirtualfunctionsforflexibility.3)Templatepolymorphismenablesgenericprogrammingfo

C polymorphismisuniqueduetoitscombinationofcompile-timeandruntimepolymorphism,allowingforbothefficiencyandflexibility.Toharnessitspowerstylishly:1)Usesmartpointerslikestd::unique_ptrformemorymanagement,2)Ensurebaseclasseshavevirtualdestructors,3)Emp
