国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Table of Contents
Multi-threading C# Applications with SQL Server Database Calls
Deadlock Management
Reasons for Deadlocks
Improved Multi-threading Approach
Sample Code
Conclusion
Home Database Mysql Tutorial How Can I Efficiently Handle Deadlocks in Multi-threaded C# Applications Accessing SQL Server?

How Can I Efficiently Handle Deadlocks in Multi-threaded C# Applications Accessing SQL Server?

Jan 03, 2025 am 11:23 AM

How Can I Efficiently Handle Deadlocks in Multi-threaded C# Applications Accessing SQL Server?

Multi-threading C# Applications with SQL Server Database Calls

The provided code showcases a multi-threaded C# application that performs SQL Server database operations. However, the approach used can lead to performance issues and deadlocks. This article explores a more efficient and robust implementation that leverages the Task Parallel Library (TPL) and includes deadlock handling.

Deadlock Management

When working with multi-threaded applications involving database interactions, deadlocks are inevitable. It's essential to anticipate them and develop mechanisms to handle them effectively.

Reasons for Deadlocks

  • Excessive Threads: Limiting the number of threads can prevent contention for resources and reduce deadlock occurrences.
  • Inadequate Indexing: Insufficient indexes can lead to non-selective queries, resulting in large range locks that increase deadlock chances.
  • Excessive Indexing: Too many indexes also impact performance due to the overhead of maintaining them, increasing the risk of deadlocks.
  • High Transaction Isolation Level: The default 'Serializable' isolation level in .NET restricts concurrency and can lead to more deadlocks. Lower isolation levels, such as 'Read Committed,' can mitigate this.

Improved Multi-threading Approach

Consider the following approach:

  1. Utilizing TPL: The TPL simplifies parallel programming with its intuitive syntax and built-in support for parallel processing. It simplifies thread management and optimizes workload distribution.
  2. Deadlock Retries: Incorporating a deadlock retry mechanism ensures that operations are persisted despite occasional deadlocks. The DeadlockRetryHelper class demonstrates this by re-attempting operations within a specified limit.
  3. Partitioning Strategy: If possible, consider partitioning tables into multiple distinct datasets. This enables multiple threads to work independently on different partitions, minimizing deadlocks. SQL Server's partitioning capabilities can facilitate this effectively.
  4. Optimizing Isolation Level: Adjust the transaction isolation level to minimize deadlocks. For example, if data modifications are not critical, 'Read Committed' isolation level allows for better concurrency.

Sample Code

The following code demonstrates the recommended approach:

using System.Threading.Tasks;
using System.Transactions;
using System.Linq;
using Microsoft.Data.SqlClient;

public class MultiThreadingImproved
{
    public static void Main(string[] args)
    {
        var ids = new int[] { 1, 2, 3, 4, 5 };
        var errors = new List<ErrorType>();

        Parallel.ForEach(ids, id =>
        {
            try
            {
                CalculateDetails(id);
            }
            catch (Exception ex)
            {
                errors.Add(new ErrorType(id, ex));
            }
        });
    }

    public static void CalculateDetails(int id)
    {
        using (var db = new SqlConnection("connection string"))
        {
            db.Open();

            using (var txScope = new TransactionScope(
                TransactionScopeOption.Required,
                new TransactionOptions { IsolationLevel = IsolationLevel.ReadCommitted }))
            {
                // Query and update operations

                db.SubmitChanges();
                txScope.Complete();
            }
        }
    }

    public class ErrorType
    {
        public int Id { get; set; }
        public Exception Exception { get; set; }

        public ErrorType(int id, Exception ex)
        {
            Id = id;
            Exception = ex;
        }
    }
}

Conclusion

By addressing potential deadlocks, utilizing the TPL, and exploring alternative strategies, you can enhance the performance and reliability of your multi-threaded C# applications interacting with SQL Server databases.

The above is the detailed content of How Can I Efficiently Handle Deadlocks in Multi-threaded C# Applications Accessing SQL Server?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What are the ACID properties of a MySQL transaction? What are the ACID properties of a MySQL transaction? Jun 20, 2025 am 01:06 AM

MySQL transactions follow ACID characteristics to ensure the reliability and consistency of database transactions. First, atomicity ensures that transactions are executed as an indivisible whole, either all succeed or all fail to roll back. For example, withdrawals and deposits must be completed or not occur at the same time in the transfer operation; second, consistency ensures that transactions transition the database from one valid state to another, and maintains the correct data logic through mechanisms such as constraints and triggers; third, isolation controls the visibility of multiple transactions when concurrent execution, prevents dirty reading, non-repeatable reading and fantasy reading. MySQL supports ReadUncommitted and ReadCommi.

How to add the MySQL bin directory to the system PATH How to add the MySQL bin directory to the system PATH Jul 01, 2025 am 01:39 AM

To add MySQL's bin directory to the system PATH, it needs to be configured according to the different operating systems. 1. Windows system: Find the bin folder in the MySQL installation directory (the default path is usually C:\ProgramFiles\MySQL\MySQLServerX.X\bin), right-click "This Computer" → "Properties" → "Advanced System Settings" → "Environment Variables", select Path in "System Variables" and edit it, add the MySQLbin path, save it and restart the command prompt and enter mysql--version verification; 2.macOS and Linux systems: Bash users edit ~/.bashrc or ~/.bash_

What are the transaction isolation levels in MySQL, and which is the default? What are the transaction isolation levels in MySQL, and which is the default? Jun 23, 2025 pm 03:05 PM

MySQL's default transaction isolation level is RepeatableRead, which prevents dirty reads and non-repeatable reads through MVCC and gap locks, and avoids phantom reading in most cases; other major levels include read uncommitted (ReadUncommitted), allowing dirty reads but the fastest performance, 1. Read Committed (ReadCommitted) ensures that the submitted data is read but may encounter non-repeatable reads and phantom readings, 2. RepeatableRead default level ensures that multiple reads within the transaction are consistent, 3. Serialization (Serializable) the highest level, prevents other transactions from modifying data through locks, ensuring data integrity but sacrificing performance;

Establishing secure remote connections to a MySQL server Establishing secure remote connections to a MySQL server Jul 04, 2025 am 01:44 AM

TosecurelyconnecttoaremoteMySQLserver,useSSHtunneling,configureMySQLforremoteaccess,setfirewallrules,andconsiderSSLencryption.First,establishanSSHtunnelwithssh-L3307:localhost:3306user@remote-server-Nandconnectviamysql-h127.0.0.1-P3307.Second,editMyS

Where does mysql workbench save connection information Where does mysql workbench save connection information Jun 26, 2025 am 05:23 AM

MySQLWorkbench stores connection information in the system configuration file. The specific path varies according to the operating system: 1. It is located in %APPDATA%\MySQL\Workbench\connections.xml in Windows system; 2. It is located in ~/Library/ApplicationSupport/MySQL/Workbench/connections.xml in macOS system; 3. It is usually located in ~/.mysql/workbench/connections.xml in Linux system or ~/.local/share/data/MySQL/Wor

What is the principle behind a database connection pool? What is the principle behind a database connection pool? Jun 20, 2025 am 01:07 AM

Aconnectionpoolisacacheofdatabaseconnectionsthatarekeptopenandreusedtoimproveefficiency.Insteadofopeningandclosingconnectionsforeachrequest,theapplicationborrowsaconnectionfromthepool,usesit,andthenreturnsit,reducingoverheadandimprovingperformance.Co

Analyzing the MySQL Slow Query Log to Find Performance Bottlenecks Analyzing the MySQL Slow Query Log to Find Performance Bottlenecks Jul 04, 2025 am 02:46 AM

Turn on MySQL slow query logs and analyze locationable performance issues. 1. Edit the configuration file or dynamically set slow_query_log and long_query_time; 2. The log contains key fields such as Query_time, Lock_time, Rows_examined to assist in judging efficiency bottlenecks; 3. Use mysqldumpslow or pt-query-digest tools to efficiently analyze logs; 4. Optimization suggestions include adding indexes, avoiding SELECT*, splitting complex queries, etc. For example, adding an index to user_id can significantly reduce the number of scanned rows and improve query efficiency.

Performing logical backups using mysqldump in MySQL Performing logical backups using mysqldump in MySQL Jul 06, 2025 am 02:55 AM

mysqldump is a common tool for performing logical backups of MySQL databases. It generates SQL files containing CREATE and INSERT statements to rebuild the database. 1. It does not back up the original file, but converts the database structure and content into portable SQL commands; 2. It is suitable for small databases or selective recovery, and is not suitable for fast recovery of TB-level data; 3. Common options include --single-transaction, --databases, --all-databases, --routines, etc.; 4. Use mysql command to import during recovery, and can turn off foreign key checks to improve speed; 5. It is recommended to test backup regularly, use compression, and automatic adjustment.

See all articles