How to Generate SQL Create Scripts for Existing Tables with Query
This question pertains to generating SQL CREATE scripts for tables that already exist. While the syntax provided accurately addresses this task, some improvements can be made to the response.
Improved Response:
Possible this be helpful for you. This script generates indexes, foreign keys (FKs), a primary key (PK), and the common structure for any table. The script consists of a query portion that gathers table information and concatenates the appropriate CREATE statements.
For instance, considering the following table definition:
CREATE TABLE [dbo].[WorkOut] ( [WorkOutID] [bigint] IDENTITY(1,1) NOT NULL, [TimeSheetDate] [datetime] NOT NULL, [DateOut] [datetime] NOT NULL, [EmployeeID] [int] NOT NULL, [IsMainWorkPlace] [bit] NOT NULL, [DepartmentUID] [uniqueidentifier] NOT NULL, [WorkPlaceUID] [uniqueidentifier] NULL, [TeamUID] [uniqueidentifier] NULL, [WorkShiftCD] [nvarchar](10) NULL, [WorkHours] [real] NULL, [AbsenceCode] [varchar](25) NULL, [PaymentType] [char](2) NULL, [CategoryID] [int] NULL, [Year] AS (datepart(year,[TimeSheetDate])), CONSTRAINT [PK_WorkOut] PRIMARY KEY CLUSTERED ([WorkOutID] ASC) ) ON [PRIMARY] ALTER TABLE [dbo].[WorkOut] ADD CONSTRAINT [DF__WorkOut__IsMainW__2C1E8537] DEFAULT ((1)) FOR [IsMainWorkPlace] ALTER TABLE [dbo].[WorkOut] WITH CHECK ADD CONSTRAINT [FK_WorkOut_Employee_EmployeeID] FOREIGN KEY([EmployeeID]) REFERENCES [dbo].[Employee] ([EmployeeID]) ALTER TABLE [dbo].[WorkOut] CHECK CONSTRAINT [FK_WorkOut_Employee_EmployeeID]
A query script can be used to generate the DDL statement to recreate the table.
Declare @table_name SYSNAME = 'dbo.WorkOut' Declare @object_name SYSNAME, @object_id INT SELECT @object_name = '[' + s.name + '].[' + o.name + ']', @object_id = o.[object_id] FROM sys.objects o WITH (NOWAIT) JOIN sys.schemas s WITH (NOWAIT) ON o.[schema_id] = s.[schema_id] WHERE s.name + '.' + o.name = @table_name AND o.[type] = 'U' AND o.is_ms_shipped = 0 DECLARE @SQL NVARCHAR(MAX) = '' ;WITH index_column AS ( SELECT ic.[object_id], ic.index_id, ic.is_descending_key, ic.is_included_column, c.name FROM sys.index_columns ic WITH (NOWAIT) JOIN sys.columns c WITH (NOWAIT) ON ic.[object_id] = c.[object_id] AND ic.column_id = c.column_id WHERE ic.[object_id] = @object_id ), fk_columns AS ( SELECT k.constraint_object_id, cname = c.name, rcname = rc.name FROM sys.foreign_key_columns k WITH (NOWAIT) JOIN sys.columns rc WITH (NOWAIT) ON rc.[object_id] = k.referenced_object_id AND rc.column_id = k.referenced_column_id JOIN sys.columns c WITH (NOWAIT) ON c.[object_id] = k.parent_object_id AND c.column_id = k.parent_column_id WHERE k.parent_object_id = @object_id ) SELECT @SQL = 'CREATE TABLE ' + @object_name + CHAR(13) + '(' + CHAR(13) + STUFF(( SELECT CHAR(9) + ', [' + c.name + '] ' + CASE WHEN c.is_computed = 1 THEN 'AS ' + cc.[definition] ELSE UPPER(tp.name) + CASE WHEN tp.name IN ('varchar', 'char', 'varbinary', 'binary', 'text') THEN '(' + CASE WHEN c.max_length = -1 THEN 'MAX' ELSE CAST(c.max_length AS VARCHAR(5)) END + ')' WHEN tp.name IN ('nvarchar', 'nchar', 'ntext') THEN '(' + CASE WHEN c.max_length = -1 THEN 'MAX' ELSE CAST(c.max_length / 2 AS VARCHAR(5)) END + ')' WHEN tp.name IN ('datetime2', 'time2', 'datetimeoffset') THEN '(' + CAST(c.scale AS VARCHAR(5)) + ')' WHEN tp.name IN ('decimal', 'numeric') THEN '(' + CAST(c.[precision] AS VARCHAR(5)) + ',' + CAST(c.scale AS VARCHAR(5)) + ')' ELSE '' END + CASE WHEN c.collation_name IS NOT NULL THEN ' COLLATE ' + c.collation_name ELSE '' END + CASE WHEN c.is_nullable = 1 THEN ' NULL' ELSE ' NOT NULL' END + CASE WHEN dc.[definition] IS NOT NULL THEN ' DEFAULT' + dc.[definition] ELSE '' END + CASE WHEN ic.is_identity = 1 THEN ' IDENTITY(' + CAST(ISNULL(ic.seed_value, '0') AS CHAR(1)) + ',' + CAST(ISNULL(ic.increment_value, '1') AS CHAR(1)) + ')' ELSE '' END END + CHAR(13) FROM sys.columns c WITH (NOWAIT) JOIN sys.types tp WITH (NOWAIT) ON c.user_type_id = tp.user_type_id LEFT JOIN sys.computed_columns cc WITH (NOWAIT) ON c.[object_id] = cc.[object_id] AND c.column_id = cc.column_id LEFT JOIN sys.default_constraints dc WITH (NOWAIT) ON c.default_object_id != 0 AND c.[object_id] = dc.parent_object_id AND c.column_id = dc.parent_column_id LEFT JOIN sys.identity_columns ic WITH (NOWAIT) ON c.is_identity = 1 AND c.[object_id] = ic.[object_id] AND c.column_id = ic.column_id WHERE c.[object_id] = @object_id ORDER BY c.column_id FOR XML PATH(''), TYPE).value('.', 'NVARCHAR(MAX)'), 1, 2, CHAR(9) + ' ') + ISNULL((SELECT CHAR(9) + ', CONSTRAINT [' + k.name + '] PRIMARY KEY (' + (SELECT STUFF(( SELECT ', [' + c.name + '] ' + CASE WHEN ic.is_descending_key = 1 THEN 'DESC' ELSE 'ASC' END FROM sys.index_columns ic WITH (NOWAIT) JOIN sys.columns c WITH (NOWAIT) ON c.[object_id] = ic.[object_id] AND c.column_id = ic.column_id WHERE ic.is_included_column = 0 AND ic.[object_id] = k.parent_object_id AND ic.index_id = k.unique_index_id FOR XML PATH(N''), TYPE).value('.', 'NVARCHAR(MAX)'), 1, 2, '')) + ')' + CHAR(13) FROM sys.key_constraints k WITH (NOWAIT) WHERE k.parent_object_id = @object_id AND k.[type] = 'PK'), '') + ')' + CHAR(13) + ISNULL((SELECT ( SELECT CHAR(13) + 'ALTER TABLE ' + @object_name + ' WITH' + CASE WHEN fk.is_not_trusted = 1 THEN ' NOCHECK' ELSE ' CHECK' END + ' ADD CONSTRAINT [' + fk.name + '] FOREIGN KEY(' + STUFF(( SELECT ', [' + k.cname + ']' FROM fk_columns k WHERE k.constraint_object_id = fk.[object_id] FOR XML PATH(''), TYPE).value('.', 'NVARCHAR(MAX)'), 1, 2, '') + ')' + ' REFERENCES [' + SCHEMA_NAME(ro.[schema_id]) + '].[' + ro.name + '] (' + STUFF(( SELECT ', [' + k.rcname + ']' FROM fk_columns k WHERE k.constraint_object_id = fk.[object_id] FOR XML PATH(''), TYPE).value('.', 'NVARCHAR(MAX)'), 1, 2, '') + ')' + CASE WHEN fk.delete_referential_action = 1 THEN ' ON DELETE CASCADE' WHEN fk.delete_referential_action = 2 THEN ' ON DELETE SET NULL' WHEN fk.delete_referential_action = 3 THEN ' ON DELETE SET DEFAULT' ELSE '' END + CASE
The above is the detailed content of How to Generate SQL CREATE Scripts for Existing Tables?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics









TosecurelyconnecttoaremoteMySQLserver,useSSHtunneling,configureMySQLforremoteaccess,setfirewallrules,andconsiderSSLencryption.First,establishanSSHtunnelwithssh-L3307:localhost:3306user@remote-server-Nandconnectviamysql-h127.0.0.1-P3307.Second,editMyS

To add MySQL's bin directory to the system PATH, it needs to be configured according to the different operating systems. 1. Windows system: Find the bin folder in the MySQL installation directory (the default path is usually C:\ProgramFiles\MySQL\MySQLServerX.X\bin), right-click "This Computer" → "Properties" → "Advanced System Settings" → "Environment Variables", select Path in "System Variables" and edit it, add the MySQLbin path, save it and restart the command prompt and enter mysql--version verification; 2.macOS and Linux systems: Bash users edit ~/.bashrc or ~/.bash_

MySQLWorkbench stores connection information in the system configuration file. The specific path varies according to the operating system: 1. It is located in %APPDATA%\MySQL\Workbench\connections.xml in Windows system; 2. It is located in ~/Library/ApplicationSupport/MySQL/Workbench/connections.xml in macOS system; 3. It is usually located in ~/.mysql/workbench/connections.xml in Linux system or ~/.local/share/data/MySQL/Wor

Turn on MySQL slow query logs and analyze locationable performance issues. 1. Edit the configuration file or dynamically set slow_query_log and long_query_time; 2. The log contains key fields such as Query_time, Lock_time, Rows_examined to assist in judging efficiency bottlenecks; 3. Use mysqldumpslow or pt-query-digest tools to efficiently analyze logs; 4. Optimization suggestions include adding indexes, avoiding SELECT*, splitting complex queries, etc. For example, adding an index to user_id can significantly reduce the number of scanned rows and improve query efficiency.

mysqldump is a common tool for performing logical backups of MySQL databases. It generates SQL files containing CREATE and INSERT statements to rebuild the database. 1. It does not back up the original file, but converts the database structure and content into portable SQL commands; 2. It is suitable for small databases or selective recovery, and is not suitable for fast recovery of TB-level data; 3. Common options include --single-transaction, --databases, --all-databases, --routines, etc.; 4. Use mysql command to import during recovery, and can turn off foreign key checks to improve speed; 5. It is recommended to test backup regularly, use compression, and automatic adjustment.

When handling NULL values ??in MySQL, please note: 1. When designing the table, the key fields are set to NOTNULL, and optional fields are allowed NULL; 2. ISNULL or ISNOTNULL must be used with = or !=; 3. IFNULL or COALESCE functions can be used to replace the display default values; 4. Be cautious when using NULL values ??directly when inserting or updating, and pay attention to the data source and ORM framework processing methods. NULL represents an unknown value and does not equal any value, including itself. Therefore, be careful when querying, counting, and connecting tables to avoid missing data or logical errors. Rational use of functions and constraints can effectively reduce interference caused by NULL.

To reset the root password of MySQL, please follow the following steps: 1. Stop the MySQL server, use sudosystemctlstopmysql or sudosystemctlstopmysqld; 2. Start MySQL in --skip-grant-tables mode, execute sudomysqld-skip-grant-tables&; 3. Log in to MySQL and execute the corresponding SQL command to modify the password according to the version, such as FLUSHPRIVILEGES;ALTERUSER'root'@'localhost'IDENTIFIEDBY'your_new

To check the MySQL version, you can use the following methods in the Windows command prompt: 1. Use the command line to view directly, enter mysql--version or mysql-V; 2. After logging in to the MySQL client, execute SELECTVERSION();; 3. Manually search through the installation path, switch to the MySQL bin directory and run mysql.exe--version. These methods are suitable for different scenarios, the first two are most commonly used, and the third one is suitable for situations where environment variables are not configured.
