国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Table of Contents
Setting up the scene
Creating the dissolve map
Intermission
Creating the transition
Plug it in, and… action!
Special effects
Extra special effects
Exit… stage right
Home Web Front-end CSS Tutorial Nailing That Cool Dissolve Transition

Nailing That Cool Dissolve Transition

Mar 25, 2025 am 10:11 AM

Nailing That Cool Dissolve Transition

We’re going to create an impressive transition effect between images that’s, dare I say, very simple to implement and apply to any site. We’ll be using the kampos library because it’s very good at doing exactly what we need. We’ll also explore a few possible ways to tweak the result so that you can make it unique for your needs and adjust it to the experience and impression you’re creating.

Take one look at the Awwwards Transitions collection and you’ll get a sense of how popular it is to do immersive effects, like turning one media item into another. Many of those examples use WebGL for the job. Another thing they have in common is the use of texture mapping for either a displacement or dissolve effect (or both).

To make these effects, you need the two media sources you want to transition from and to, plus one more that is the map, or a grid of values for each pixel, that determines when and how much the media flips from one image to the next. That map can be a ready-made image, or a that’s drawn upon, say, noise. Using a dissolve transition effect by applying a noise as a map is definitely one of those things that can boost that immersive web experience. That’s what we’re after.

Setting up the scene

Before we can get to the heavy machinery, we need a simple DOM scene. Two images (or videos, if you prefer), and the minimum amount of JavaScript to make sure they’re loaded and ready for manipulation.

<main>
  <section>
    <figure>
      <canvas >
        <img  src="path/to/first.jpg" alt="My first image" />
        <img  data-src="path/to/second.jpg" alt="My second image" />
      </canvas>
    <figure>
  </section>
</main>

This will give us some minimal DOM to work with and display our scene. The stage is ready; now let’s invite in our main actors, the two images:

// Notify when our images are ready
function loadImage (src) {
  return new Promise(resolve => {
    const img = new Image();
    img.onload = function () {
      resolve(this);
    };
    img.src = src;
  });
}
// Get the image URLs
const imageFromSrc = document.querySelector('#source-from').src;
const imageToSrc = document.querySelector('#source-to').dataset.src;
// Load images  and keep their promises so we know when to start
const promisedImages = [
  loadImage(imageFromSrc),
  loadImage(imageToSrc)
];

Creating the dissolve map

The scene is set, the images are fetched?—?let’s make some magic! We’ll start by creating the effects we need. First, we create the dissolve map by creating some noise. We’ll use a Classic Perlin noise inside a turbulence effect which kind of stacks noise in different scales, one on top of the other, and renders it onto a in grayscale:

const turbulence = kampos.effects.turbulence({ noise: kampos.noise.perlinNoise });

This effect kind of works like the SVG feTurbulence filter effect. There are some good examples of this in “Creating Patterns With SVG Filters” from Bence Szabó.

Second, we set the initial parameters of the turbulence effect. These can be tweaked later for getting the specific desired visuals we might need per case:

// Depending of course on the size of the target canvas
const WIDTH = 854;
const HEIGHT = 480;
const CELL_FACTOR = 2;
const AMPLITUDE = CELL_FACTOR / WIDTH;

turbulence.frequency = {x: AMPLITUDE, y: AMPLITUDE};
turbulence.octaves = 1;
turbulence.isFractal = true;

This code gives us a nice liquid-like, or blobby, noise texture. The resulting transition looks like the first image is sinking into the second image. The CELL_FACTOR value can be increased to create a more dense texture with smaller blobs, while the octaves=1 is what’s keeping the noise blobby. Notice we also normalize the amplitude to at least the larger side of the media, so that texture is stretched nicely across our image.

Next we render the dissolve map. In order to be able to see what we got, we’ll use the canvas that’s already in the DOM, just for now:

const mapTarget = document.querySelector('#target'); // instead of document.createElement('canvas');
mapTarget.width = WIDTH;
mapTarget.height = HEIGHT;

const dissolveMap = new kampos.Kampos({
  target: mapTarget,
  effects: [turbulence],
  noSource: true
});
dissolveMap.draw();

Intermission

We are going to pause here and examine how changing the parameters above affects the visual results. Now, let’s tweak some of the noise configurations to get something that’s more smoke-like, rather than liquid-like, say:

const CELL_FACTOR = 4; // instead of 2

And also this:

turbulence.octaves = 8; // instead of 1

Now we have a more a dense pattern with eight levels (instead of one) superimposed, giving much more detail:

Fantastic! Now back to the original values, and onto our main feature…

Creating the transition

It’s time to create the transition effect:

const dissolve = kampos.transitions.dissolve();
dissolve.map = mapTarget;
dissolve.high = 0.03; // for liquid-like effect

Notice the above value for high? This is important for getting that liquid-like results. The transition uses a step function to determine whether to show the first or second media. During that step, the transition is done smoothly so that we get soft edges rather than jagged ones. However, we keep the low edge of the step at 0.0 (the default). You can imagine a transition from 0.0 to 0.03 is very abrupt, resulting in a rapid change from one media to the next. Think of it as clipping.

On the other hand, if the range was 0.0 to 0.5, we’d get a wider range of “transparency,” or a mix of the two images?—?like we would get with partial opacity?—?and we’ll get a smoke-like or “cloudy” effect. We’ll try that one in just a moment.

Before we continue, we must remember to replace the canvas we got from the document with a new one we create off the DOM, like so:

const mapTarget = document.createElement('canvas');

Plug it in, and… action!

We’re almost there! Let’s create our compositor instance:

const target = document.querySelector('#target');
const hippo = new kampos.Kampos({target, effects: [dissolve]});

And finally, get the images and play the transition:

Promise.all(promisedImages).then(([fromImage, toImage]) => {
  hippo.setSource({media: fromImage, width, height});
  dissolve.to = toImage;
  hippo.play(time => {
    // a sin() to play in a loop
    dissolve.progress = Math.abs(Math.sin(time * 4e-4)); // multiply time by a factor to slow it down a bit
  });
});

Sweet!

Special effects

OK, we got that blobby goodness. We can try playing a bit with the parameters to get a whole different result. For example, maybe something more smoke-like:

const CELL_FACTOR = 4;
turbulence.octaves = 8;

And for a smoother transition, we’ll raise the high edge of the transition’s step function:

dissolve.high = 0.3;

Now we have this:

Extra special effects

And, for our last plot twist, let’s also animate the noise itself! First, we need to make sure kampos will update the dissolve map texture on every frame, which is something it doesn’t do by default:

dissolve.textures[1].update = true;

Then, on each frame, we want to advance the turbulence time property, and redraw it. We’ll also slow down the transition so we can see the noise changing while the transition takes place:

hippo.play(time => {
  turbulence.time = time * 2;
  dissolveMap.draw();
  // Notice that the time factor is smaller here
  dissolve.progress = Math.abs(Math.sin(time * 2e-4));
});

And we get this:

That’s it!

Exit… stage right

This is just one example of what we can do with kampos for media transitions. It’s up to you now to mix the ingredients to get the most mileage out of it. Here are some ideas to get you going:

  • Transition between site/section backgrounds
  • Transition between backgrounds in an image carousel
  • Change background in reaction to either a click or hover
  • Remove a custom poster image from a video when it starts playing

Whatever you do, be sure to give us a shout about it in the comments.

The above is the detailed content of Nailing That Cool Dissolve Transition. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What is 'render-blocking CSS'? What is 'render-blocking CSS'? Jun 24, 2025 am 12:42 AM

CSS blocks page rendering because browsers view inline and external CSS as key resources by default, especially with imported stylesheets, header large amounts of inline CSS, and unoptimized media query styles. 1. Extract critical CSS and embed it into HTML; 2. Delay loading non-critical CSS through JavaScript; 3. Use media attributes to optimize loading such as print styles; 4. Compress and merge CSS to reduce requests. It is recommended to use tools to extract key CSS, combine rel="preload" asynchronous loading, and use media delayed loading reasonably to avoid excessive splitting and complex script control.

External vs. Internal CSS: What's the Best Approach? External vs. Internal CSS: What's the Best Approach? Jun 20, 2025 am 12:45 AM

ThebestapproachforCSSdependsontheproject'sspecificneeds.Forlargerprojects,externalCSSisbetterduetomaintainabilityandreusability;forsmallerprojectsorsingle-pageapplications,internalCSSmightbemoresuitable.It'scrucialtobalanceprojectsize,performanceneed

Does my CSS must be on lower case? Does my CSS must be on lower case? Jun 19, 2025 am 12:29 AM

No,CSSdoesnothavetobeinlowercase.However,usinglowercaseisrecommendedfor:1)Consistencyandreadability,2)Avoidingerrorsinrelatedtechnologies,3)Potentialperformancebenefits,and4)Improvedcollaborationwithinteams.

CSS Case Sensitivity: Understanding What Matters CSS Case Sensitivity: Understanding What Matters Jun 20, 2025 am 12:09 AM

CSSismostlycase-insensitive,butURLsandfontfamilynamesarecase-sensitive.1)Propertiesandvalueslikecolor:red;arenotcase-sensitive.2)URLsmustmatchtheserver'scase,e.g.,/images/Logo.png.3)Fontfamilynameslike'OpenSans'mustbeexact.

What is Autoprefixer and how does it work? What is Autoprefixer and how does it work? Jul 02, 2025 am 01:15 AM

Autoprefixer is a tool that automatically adds vendor prefixes to CSS attributes based on the target browser scope. 1. It solves the problem of manually maintaining prefixes with errors; 2. Work through the PostCSS plug-in form, parse CSS, analyze attributes that need to be prefixed, and generate code according to configuration; 3. The usage steps include installing plug-ins, setting browserslist, and enabling them in the build process; 4. Notes include not manually adding prefixes, keeping configuration updates, prefixes not all attributes, and it is recommended to use them with the preprocessor.

What are CSS counters? What are CSS counters? Jun 19, 2025 am 12:34 AM

CSScounterscanautomaticallynumbersectionsandlists.1)Usecounter-resettoinitialize,counter-incrementtoincrease,andcounter()orcounters()todisplayvalues.2)CombinewithJavaScriptfordynamiccontenttoensureaccurateupdates.

CSS: When Does Case Matter (and When Doesn't)? CSS: When Does Case Matter (and When Doesn't)? Jun 19, 2025 am 12:27 AM

In CSS, selector and attribute names are case-sensitive, while values, named colors, URLs, and custom attributes are case-sensitive. 1. The selector and attribute names are case-insensitive, such as background-color and background-Color are the same. 2. The hexadecimal color in the value is case-sensitive, but the named color is case-sensitive, such as red and Red is invalid. 3. URLs are case sensitive and may cause file loading problems. 4. Custom properties (variables) are case sensitive, and you need to pay attention to the consistency of case when using them.

Case Sensitivity in CSS: Selectors, Properties, and Values Explained Case Sensitivity in CSS: Selectors, Properties, and Values Explained Jun 19, 2025 am 12:38 AM

CSSselectorsandpropertynamesarecase-insensitive,whilevaluescanbecase-sensitivedependingoncontext.1)Selectorslike'div'and'DIV'areequivalent.2)Propertiessuchas'background-color'and'BACKGROUND-COLOR'aretreatedthesame.3)Valueslikecolornamesarecase-insens

See all articles