


Working with Dates and Times Using Python's datetime Module
Jul 05, 2025 am 02:38 AMHow to handle date and time using Python's datetime module? 1. Get the current time: Use datetime.now() to obtain the complete date and time object, and extract the date and time parts through .now.date() or .now.time() respectively; 2. Format date and time: Use the .strftime() method to customize the output format with format characters (such as %Y, %m, %d, %H, %M, %S); 3. Parsing the string to a datetime object: Use the datetime.strptime() method to provide the string and its corresponding format for conversion; 4. Processing the time difference: perform addition and subtraction operations through the timedelta class, such as adding one day with timedelta(days=1), to realize the difference calculation between time points. These methods can meet most time operation requirements, but pay attention to format accuracy and time zone issues.
Processing dates and times is a common task in programming, and Python provides a datetime
module to help developers easily manipulate time and dates. This module is powerful and intuitive to use.

How to get the current date and time?
If you need to know the current time when the program is running, the datetime
module can help you easily implement it. The easiest way is to use datetime.now()
function:

from datetime import datetime now = datetime.now() print("Current time:", now)
This code outputs the complete date and time, including year, month, day, hour, minute, second, and microseconds. If you want to get only the date or only the time part, you can use .date()
or .time()
method:
-
now.date()
returns the date part -
now.time()
returns the time part
This way you can extract information based on specific needs, such as just printing the date:

print("Today is:", now.date())
How to format date and time?
Although the default output format is complete, it may not necessarily meet your display needs. At this time, you need to use the .strftime()
method to customize the format. It accepts a format string as an argument and returns the formatted time string.
Common formats are as follows:
-
%Y
: Four-digit year (such as 2025) -
%m
: Double-digit month (01 to 12) -
%d
: Date of double digits (01 to 31) -
%H
: hours (24-hour system) -
%M
: Minutes -
%S
: seconds
For example, format the time to the form "YYYY-MM-DD HH:MM":
formatted = now.strftime("%Y-%m-%d %H:%M") print("Formatted time:", formatted)
You can combine these formats as needed, such as generating the "Saturday, April 5, 2025" format:
custom_format = now.strftime("%Y year %m month %d day %A") print(custom_format)
Note that %A
means the full week name, depending on the language settings of the system. If you want to pin it to English, you may need to configure additionally or use a third-party library.
How to parse a string as a datetime object?
Sometimes you will get a string representing time from a file, database, or user input. If you want to calculate or compare, you need to convert it into a datetime
object first.
At this time, you can use the datetime.strptime()
method, which accepts two parameters: one is a string and the other is the corresponding format of the string:
date_str = "2025-04-05 15:30" parsed = datetime.strptime(date_str, "%Y-%m-%d %H:%M") print("Parsed time object:", parsed)
As long as the format matches, it can be parsed correctly. Otherwise, an exception will be thrown, so it is recommended to add exception handling in the actual project.
Processing time difference: Tips for using timedelta
When you need to calculate the difference between two time points, or want to add or subtract a certain time, you can use the timedelta
type.
For example, you want to know what time is tomorrow:
from datetime import timedelta tomorrow = now timedelta(days=1) print("Tomorrow:", tomorrow)
You can also push forward for a few hours:
two_hours_ago = now - timedelta(hours=2) print("two hours ago:", two_hours_ago)
More flexible is that you can operate multiple units at the same time, such as adding 003 hours a day:
future = now timedelta(days=1, hours=3)
This function is very practical in scenarios such as timing tasks, countdowns, log analysis, etc.
The above are some common methods for using Python's datetime
module to process dates and times. Although it is not complicated, it is easy to ignore the details, such as incorrect format characters, time zone problems, etc., which will lead to program errors. Basically, that's enough to meet the time operation needs in most daily development.
The above is the detailed content of Working with Dates and Times Using Python's datetime Module. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Python's unittest and pytest are two widely used testing frameworks that simplify the writing, organizing and running of automated tests. 1. Both support automatic discovery of test cases and provide a clear test structure: unittest defines tests by inheriting the TestCase class and starting with test\_; pytest is more concise, just need a function starting with test\_. 2. They all have built-in assertion support: unittest provides assertEqual, assertTrue and other methods, while pytest uses an enhanced assert statement to automatically display the failure details. 3. All have mechanisms for handling test preparation and cleaning: un

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

Dynamic programming (DP) optimizes the solution process by breaking down complex problems into simpler subproblems and storing their results to avoid repeated calculations. There are two main methods: 1. Top-down (memorization): recursively decompose the problem and use cache to store intermediate results; 2. Bottom-up (table): Iteratively build solutions from the basic situation. Suitable for scenarios where maximum/minimum values, optimal solutions or overlapping subproblems are required, such as Fibonacci sequences, backpacking problems, etc. In Python, it can be implemented through decorators or arrays, and attention should be paid to identifying recursive relationships, defining the benchmark situation, and optimizing the complexity of space.

To implement a custom iterator, you need to define the __iter__ and __next__ methods in the class. ① The __iter__ method returns the iterator object itself, usually self, to be compatible with iterative environments such as for loops; ② The __next__ method controls the value of each iteration, returns the next element in the sequence, and when there are no more items, StopIteration exception should be thrown; ③ The status must be tracked correctly and the termination conditions must be set to avoid infinite loops; ④ Complex logic such as file line filtering, and pay attention to resource cleaning and memory management; ⑤ For simple logic, you can consider using the generator function yield instead, but you need to choose a suitable method based on the specific scenario.

Future trends in Python include performance optimization, stronger type prompts, the rise of alternative runtimes, and the continued growth of the AI/ML field. First, CPython continues to optimize, improving performance through faster startup time, function call optimization and proposed integer operations; second, type prompts are deeply integrated into languages ??and toolchains to enhance code security and development experience; third, alternative runtimes such as PyScript and Nuitka provide new functions and performance advantages; finally, the fields of AI and data science continue to expand, and emerging libraries promote more efficient development and integration. These trends indicate that Python is constantly adapting to technological changes and maintaining its leading position.

Python's socket module is the basis of network programming, providing low-level network communication functions, suitable for building client and server applications. To set up a basic TCP server, you need to use socket.socket() to create objects, bind addresses and ports, call .listen() to listen for connections, and accept client connections through .accept(). To build a TCP client, you need to create a socket object and call .connect() to connect to the server, then use .sendall() to send data and .recv() to receive responses. To handle multiple clients, you can use 1. Threads: start a new thread every time you connect; 2. Asynchronous I/O: For example, the asyncio library can achieve non-blocking communication. Things to note

Polymorphism is a core concept in Python object-oriented programming, referring to "one interface, multiple implementations", allowing for unified processing of different types of objects. 1. Polymorphism is implemented through method rewriting. Subclasses can redefine parent class methods. For example, the spoke() method of Animal class has different implementations in Dog and Cat subclasses. 2. The practical uses of polymorphism include simplifying the code structure and enhancing scalability, such as calling the draw() method uniformly in the graphical drawing program, or handling the common behavior of different characters in game development. 3. Python implementation polymorphism needs to satisfy: the parent class defines a method, and the child class overrides the method, but does not require inheritance of the same parent class. As long as the object implements the same method, this is called the "duck type". 4. Things to note include the maintenance

The core answer to Python list slicing is to master the [start:end:step] syntax and understand its behavior. 1. The basic format of list slicing is list[start:end:step], where start is the starting index (included), end is the end index (not included), and step is the step size; 2. Omit start by default start from 0, omit end by default to the end, omit step by default to 1; 3. Use my_list[:n] to get the first n items, and use my_list[-n:] to get the last n items; 4. Use step to skip elements, such as my_list[::2] to get even digits, and negative step values ??can invert the list; 5. Common misunderstandings include the end index not
