国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Table of Contents
0. Effect demonstration
1. Key pair generation
2. Implementation of encryption and decryption
3. Generating function of random prime numbers
4. Implementation of eucalg function
5 , test
1), generate key
2), Encrypt the file content
3. Encrypt the file Content decryption
Home Backend Development Python Tutorial Use Python to implement RSA encryption and decryption

Use Python to implement RSA encryption and decryption

Apr 14, 2023 pm 02:13 PM
python rsa Encryption and decryption

I saw an English article [1] yesterday, showing how to use Python to implement the RSA algorithm. The logic of the code is the same as the previous article Understanding the RSA Algorithm. Friends who are not familiar with RSA can read the article Understanding the RSA Algorithm. , which explains what RSA is, the mathematical principles of RSA, and gives a simple example. It can be said to be the easiest article to understand RSA on Quanzhihu (this comes from a reader's comment).

I ran the code provided in English and found that it could not encrypt Chinese, so I modified the encryption and decryption functions to support Chinese encryption and decryption. Today’s article will share how to use Python to implement the RSA encryption and decryption process to help you establish an intuitive understanding of RSA. The random prime number generation algorithm in the code is also worth learning.

0. Effect demonstration

Let’s take a look at the effect first.

Original text: "There is a mole, terminate the transaction"

Use Python to implement RSA encryption and decryption

The cipher text cannot be cracked at all:

Use Python to implement RSA encryption and decryption

After decryption:

Use Python to implement RSA encryption and decryption

The complete code public account "Python No. 7" can be obtained by replying "rsa".

1. Key pair generation

Ideas:

1) Randomly find two prime numbers (prime numbers) p and q. The larger p and q, the safer they are. Here we choose a 1024-bit prime number:

p = genprime(1024)
q = genprime(1024)

genprime() Let’s not talk about the implementation process of the function.

2) Calculate their product n = p * q and Euler function lambda_n.

n = p * q
lambda_n = (p - 1) * (q - 1)

3) Randomly select an integer e, the condition is 1 < e < lambda_n, and e and lambda_n are relatively prime. For example, if you select 35537, 35537 has only 16 bits and must be smaller than lambda_n. < e < lambda_n,且 e 與 lambda_n 互質(zhì)。比如選擇 35537,35537 只有 16 位,必然小于 lambda_n。

e = 35537

4) Find an integer d such that the remainder of e * d divided by lambda_n is 1, and return the key pair.

d = eucalg(e, lambda_n)[0]
if d < 0: d += lambda_n
return (d, n), (e, n)

The implementation of the eucalg function will be discussed later.

At this point, the key pair generation function is as follows:

def create_keys():
 p = genprime(1024)
 q = genprime(1024)
 n = p * q
 lambda_n = (p - 1) * (q - 1)
 e = 35537
 d = eucalg(e, lambda_n)[0]
 if d < 0: d += lambda_n
 return (d, n), (e, n)

2. Implementation of encryption and decryption

The encryption and decryption processes are the same, public key encryption, private key encryption Key decryption, and vice versa, private key encryption and public key decryption, but the former is called encryption and the latter is called signature.

The specific function implementation is as follows:

def encrypt_data(data,key):
e_data = []
for d in data:
 e = modpow(d, key[0], key[1]) 
 e_data.append(e)
return e_data

## 加密和解密的邏輯完全一樣
decrypt_data = encrypt_data

The modpow function is used here, which is used to calculate the formula b^e % n = r.

  • If it is an encryption process, then b is the plaintext, (n,e) is the public key, and r is the ciphertext.
  • If it is a decryption process, then b is the ciphertext, (n, d) is the private key, and r is the famous text.

modpow is defined as follows:

def modpow(b, e, n):
 # find length of e in bits
 tst = 1
 siz = 0
 while e >= tst:
tst <<= 1
siz += 1
 siz -= 1
 # calculate the result
 r = 1
 for i in range(siz, -1, -1):
r = (r * r) % n
if (e >> i) & 1: r = (r * b) % n
 return r

3. Generating function of random prime numbers

Generating function of random prime numbers, which uses matrix multiplication and Fibonacci Sequence shows the importance of mathematics to algorithms.

# matrix multiplication
def sqmatrixmul(m1, m2, w, mod):
 mr = [[0 for j in range(w)] for i in range(w)]
 for i in range(w):
for j in range(w):
 for k in range(w):
mr[i][j] = (mr[i][j] + m1[i][k] * m2[k][j]) % mod
 return mr

# fibonacci calculator
def fib(x, mod):
 if x < 3: return 1
 x -= 2
 # find length of e in bits
 tst = 1
 siz = 0
 while x >= tst:
tst <<= 1
siz += 1
 siz -= 1
 # calculate the matrix
 fm = [
# function matrix
[0, 1],
[1, 1]
 ]
 rm = [
# result matrix
# (identity)
[1, 0],
[0, 1]
 ]
 for i in range(siz, -1, -1):
rm = sqmatrixmul(rm, rm, 2, mod)
if (x >> i) & 1:
 rm = sqmatrixmul(rm, fm, 2, mod)

 # second row of resulting vector is result
 return (rm[1][0] + rm[1][1]) % mod

def genprime(siz):
 while True:
num = (1 << (siz - 1)) + secrets.randbits(siz - 1) - 10;
# num must be 3 or 7 (mod 10)
num -= num % 10
num += 3 # 3 (mod 10)
# heuristic test
if modpow(2, num - 1, num) == 1 and fib(num + 1, num) == 0:
 return num
num += 5 # 7 (mod 10)
# heuristic test
if modpow(2, num - 1, num) == 1 and fib(num + 1, num) == 0:
 return num

4. Implementation of eucalg function

The essence of the function is to find the solution to the following linear equation of two variables:

e * x - lambda_n * y =1

Specific code:

def eucalg(a, b):
 # make a the bigger one and b the lesser one
 swapped = False
 if a < b:
a, b = b, a
swapped = True
 # ca and cb store current a and b in form of
 # coefficients with initial a and b
 # a' = ca[0] * a + ca[1] * b
 # b' = cb[0] * a + cb[1] * b
 ca = (1, 0)
 cb = (0, 1)
 while b != 0:
# k denotes how many times number b
# can be substracted from a
k = a // b
# swap a and b so b is always the lesser one
a, b, ca, cb = b, a-b*k, cb, (ca[0]-k*cb[0], ca[1]-k*cb[1])
 if swapped:
return (ca[1], ca[0])
 else:
return ca

5 , test

test.py script usage method:

1), generate key

python test.py make-keys rsakey

The public key is saved in rsakey.pub, and the private key is saved in rsakey.priv中

2), Encrypt the file content

If there is a plain text .txt file:

python test.py encrypt 明文.txt from rsakey to 密文.txt

will generate a ciphertext .txt

3. Encrypt the file Content decryption

If there is a file ciphertext.txt:

python test.py decrypt 密文.txt as rsakey to 解密后.txt

will generate a decrypted .txt

Final words

This article shares the Python of the RSA algorithm A simple implementation can help understand the RSA algorithm.


The above is the detailed content of Use Python to implement RSA encryption and decryption. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to handle API authentication in Python How to handle API authentication in Python Jul 13, 2025 am 02:22 AM

The key to dealing with API authentication is to understand and use the authentication method correctly. 1. APIKey is the simplest authentication method, usually placed in the request header or URL parameters; 2. BasicAuth uses username and password for Base64 encoding transmission, which is suitable for internal systems; 3. OAuth2 needs to obtain the token first through client_id and client_secret, and then bring the BearerToken in the request header; 4. In order to deal with the token expiration, the token management class can be encapsulated and automatically refreshed the token; in short, selecting the appropriate method according to the document and safely storing the key information is the key.

How to test an API with Python How to test an API with Python Jul 12, 2025 am 02:47 AM

To test the API, you need to use Python's Requests library. The steps are to install the library, send requests, verify responses, set timeouts and retry. First, install the library through pipinstallrequests; then use requests.get() or requests.post() and other methods to send GET or POST requests; then check response.status_code and response.json() to ensure that the return result is in compliance with expectations; finally, add timeout parameters to set the timeout time, and combine the retrying library to achieve automatic retry to enhance stability.

Python variable scope in functions Python variable scope in functions Jul 12, 2025 am 02:49 AM

In Python, variables defined inside a function are local variables and are only valid within the function; externally defined are global variables that can be read anywhere. 1. Local variables are destroyed as the function is executed; 2. The function can access global variables but cannot be modified directly, so the global keyword is required; 3. If you want to modify outer function variables in nested functions, you need to use the nonlocal keyword; 4. Variables with the same name do not affect each other in different scopes; 5. Global must be declared when modifying global variables, otherwise UnboundLocalError error will be raised. Understanding these rules helps avoid bugs and write more reliable functions.

Python FastAPI tutorial Python FastAPI tutorial Jul 12, 2025 am 02:42 AM

To create modern and efficient APIs using Python, FastAPI is recommended; it is based on standard Python type prompts and can automatically generate documents, with excellent performance. After installing FastAPI and ASGI server uvicorn, you can write interface code. By defining routes, writing processing functions, and returning data, APIs can be quickly built. FastAPI supports a variety of HTTP methods and provides automatically generated SwaggerUI and ReDoc documentation systems. URL parameters can be captured through path definition, while query parameters can be implemented by setting default values ??for function parameters. The rational use of Pydantic models can help improve development efficiency and accuracy.

Python for loop with timeout Python for loop with timeout Jul 12, 2025 am 02:17 AM

Add timeout control to Python's for loop. 1. You can record the start time with the time module, and judge whether it is timed out in each iteration and use break to jump out of the loop; 2. For polling class tasks, you can use the while loop to match time judgment, and add sleep to avoid CPU fullness; 3. Advanced methods can consider threading or signal to achieve more precise control, but the complexity is high, and it is not recommended for beginners to choose; summary key points: manual time judgment is the basic solution, while is more suitable for time-limited waiting class tasks, sleep is indispensable, and advanced methods are suitable for specific scenarios.

How to parse large JSON files in Python? How to parse large JSON files in Python? Jul 13, 2025 am 01:46 AM

How to efficiently handle large JSON files in Python? 1. Use the ijson library to stream and avoid memory overflow through item-by-item parsing; 2. If it is in JSONLines format, you can read it line by line and process it with json.loads(); 3. Or split the large file into small pieces and then process it separately. These methods effectively solve the memory limitation problem and are suitable for different scenarios.

Python for loop over a tuple Python for loop over a tuple Jul 13, 2025 am 02:55 AM

In Python, the method of traversing tuples with for loops includes directly iterating over elements, getting indexes and elements at the same time, and processing nested tuples. 1. Use the for loop directly to access each element in sequence without managing the index; 2. Use enumerate() to get the index and value at the same time. The default index is 0, and the start parameter can also be specified; 3. Nested tuples can be unpacked in the loop, but it is necessary to ensure that the subtuple structure is consistent, otherwise an unpacking error will be raised; in addition, the tuple is immutable and the content cannot be modified in the loop. Unwanted values can be ignored by \_. It is recommended to check whether the tuple is empty before traversing to avoid errors.

What are python default arguments and their potential issues? What are python default arguments and their potential issues? Jul 12, 2025 am 02:39 AM

Python default parameters are evaluated and fixed values ??when the function is defined, which can cause unexpected problems. Using variable objects such as lists as default parameters will retain modifications, and it is recommended to use None instead; the default parameter scope is the environment variable when defined, and subsequent variable changes will not affect their value; avoid relying on default parameters to save state, and class encapsulation state should be used to ensure function consistency.

See all articles