国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Maison développement back-end Tutoriel Python Comment choisir le bon design pattern en Python, avec des exemples

Comment choisir le bon design pattern en Python, avec des exemples

Oct 24, 2024 am 06:12 AM

Comment choisir le bon design pattern en Python, avec des exemples

Les design patterns ou patrons de conception sont des solutions éprouvées à des problèmes courants en développement logiciel. Ils offrent un modèle réutilisable pour résoudre des problèmes de conception, améliorant ainsi la maintenabilité et la flexibilité du code.

Mais avec tant de design patterns disponibles, comment savoir lequel implémenter en Python pour un problème donné ? Dans cet article, nous allons explorer les étapes pour choisir le bon design pattern et fournir des exemples pour chacun afin de vous aider à les comprendre et à les appliquer efficacement.

1. Comprendre le problème

La première étape pour choisir un design pattern est de comprendre clairement le problème que vous essayez de résoudre. Posez-vous les questions suivantes :

Quel est le comportement attendu ?
Quelles sont les contraintes du système ?
Quels sont les points d'extension ou de variation possibles ?

2. Catégoriser le design pattern

Les design patterns sont généralement classés en trois catégories :

Créationnel : Concernent la création d'objets.
Structurel : Concernent la composition des objets.
Comportemental : Concernent les interactions entre les objets.
Identifier la catégorie correspondant à votre problème peut aider à réduire le nombre de patterns pertinents.

3. Choisir le design pattern approprié

Après avoir compris le problème et sa catégorie, examinez les design patterns dans cette catégorie pour trouver celui qui correspond le mieux à votre situation. Considérez les points suivants :

Flexibilité : Le pattern offre-t-il la flexibilité nécessaire ?
Complexité : N'introduit-il pas une complexité inutile ?
Extensibilité : Facilite-t-il les futures extensions ?

  1. Exemples de design patterns en Python Singleton Quand l'utiliser ? Lorsque vous avez besoin de vous assurer qu'une classe n'a qu'une seule instance et fournir un point d'accès global à cette instance.

Exemple en Python :
`class SingletonMeta(type):
_instance = {}

def __call__(cls, *args, **kwargs):
    if cls not in cls._instance:
        cls._instance[cls] = super().__call__(*args, **kwargs)
    return cls._instance[cls]

class Logger(metaclass=SingletonMeta):
def log(self, message):
print(f"[LOG]: {message}")

Utilisation

logger1 = Logger()
logger2 = Logger()

print(logger1 is logger2) # Sortie: True

logger1.log("Singleton pattern in action.")
`
Pourquoi ?a fonctionne ?
Le SingletonMeta est un métaclasse qui contr?le la création des instances de Logger. Si une instance existe déjà, elle est retournée, garantissant qu'il n'y a qu'une seule instance.

Factory
Quand l'utiliser ?
Lorsque vous avez une classe parent avec plusieurs classes enfants et que, sur la base des données d'entrée, vous devez retourner l'une des classes enfants.

Exemple en Python :
`class Shape:
def draw(self):
pass

class Circle(Shape):
def draw(self):
print("Drawing a circle.")

class Square(Shape):
def draw(self):
print("Drawing a square.")

def shape_factory(shape_type):
if shape_type == "circle":
return Circle()
elif shape_type == "square":
return Square()
else:
raise ValueError("Unknown shape type.")

Utilisation

shape = shape_factory("circle")
shape.draw() # Sortie: Drawing a circle.
`
Pourquoi ?a fonctionne ?
La factory encapsule la logique de création des objets, permettant de créer des instances sans exposer la logique sous-jacente.

Observer
Quand l'utiliser ?
Lorsque vous avez un objet (le sujet) qui doit notifier plusieurs autres objets (observateurs) lorsqu'un changement d'état se produit.

Exemple en Python :
`class Subject:
def init(self):
self._observers = []

def __call__(cls, *args, **kwargs):
    if cls not in cls._instance:
        cls._instance[cls] = super().__call__(*args, **kwargs)
    return cls._instance[cls]

class Observer:
def update(self, message):
pass

class EmailObserver(Observer):
def update(self, message):
print(f"Email notification: {message}")

class SMSObserver(Observer):
def update(self, message):
print(f"SMS notification: {message}")

Utilisation

subject = Subject()
subject.attach(EmailObserver())
subject.attach(SMSObserver())

subject.notify("Observer pattern implemented.")
`
Pourquoi ?a fonctionne ?
Le sujet maintient une liste d'observateurs et les notifie en cas de changement, permettant une communication découplée.
Strategy
Quand l'utiliser ?
Lorsque vous avez plusieurs algorithmes pour effectuer une tache et que vous souhaitez les interchanger dynamiquement.

Exemple en Python :
`import types

class TextProcessor:
def init(self, formatter):
self.formatter = types.MethodType(formatter, self)

def attach(self, observer):
    self._observers.append(observer)

def notify(self, message):
    for observer in self._observers:
        observer.update(message)

def uppercase_formatter(self, text):
return text.upper()

def lowercase_formatter(self, text):
return text.lower()

Utilisation

processor = TextProcessor(uppercase_formatter)
print(processor.process("Hello World")) # Sortie: HELLO WORLD

processor.formatter = types.MethodType(lowercase_formatter, processor)
print(processor.process("Hello World")) # Sortie: hello world
`
Pourquoi ?a fonctionne ?
Le pattern Strategy permet de changer l'algorithme utilisé par un objet à la volée, en attribuant une nouvelle fonction à formatter.

Decorator
Quand l'utiliser ?
Lorsque vous souhaitez ajouter dynamiquement de nouvelles fonctionnalités à un objet sans modifier sa structure.

Exemple en Python :
`def bold_decorator(func):
def wrapper():
return "" func() ""
return wrapper

def italic_decorator(func):
def wrapper():
return "" func() ""
return wrapper

@bold_decorator
@italic_decorator
def say_hello():
return "Hello"

Utilisation

print(say_hello()) # Sortie: Hello
`

Pourquoi ?a fonctionne ?
Les décorateurs permettent d'envelopper une fonction pour lui ajouter des fonctionnalités, comme le formatage ici, sans modifier la fonction originale.

Adapter
Quand l'utiliser ?
Lorsque vous devez utiliser une classe existante mais que son interface ne correspond pas à vos besoins.

Exemple en Python :
`class EuropeanSocketInterface:
def voltage(self): pass
def live(self): pass
def neutral(self): pass

class EuropeanSocket(EuropeanSocketInterface):
def voltage(self):
return 230

def __call__(cls, *args, **kwargs):
    if cls not in cls._instance:
        cls._instance[cls] = super().__call__(*args, **kwargs)
    return cls._instance[cls]

class USASocketInterface:
def voltage(self): pass
def live(self): pass
def neutral(self): pass

class Adapter(USASocketInterface):
def init(self, european_socket):
self.european_socket = european_socket

def attach(self, observer):
    self._observers.append(observer)

def notify(self, message):
    for observer in self._observers:
        observer.update(message)

Utilisation

euro_socket = EuropeanSocket()
adapter = Adapter(euro_socket)
print(f"Voltage: {adapter.voltage()}V") # Sortie: Voltage: 110V
`
adapter traduit l'interface d'une classe en une autre interface que le client attend, permettant une compatibilité entre des interfaces incompatibles.

Command
Quand l'utiliser ?
Lorsque vous souhaitez encapsuler une requête en tant qu'objet, permettant de paramétrer des clients avec différentes requêtes, files d'attente ou journalisation.

Exemple en Python :
`class Command:
def execute(self):
pass

class LightOnCommand(Command):
def init(self, light):
self.light = light

def process(self, text):
    return self.formatter(text)

class LightOffCommand(Command):
def init(self, light):
self.light = light

def live(self):
    return 1

def neutral(self):
    return -1

class Light:
def turn_on(self):
print("Light turned ON")

def voltage(self):
    return 110

def live(self):
    return self.european_socket.live()

def neutral(self):
    return self.european_socket.neutral()

class RemoteControl:
def submit(self, command):
command.execute()

Utilisation

light = Light()
on_command = LightOnCommand(light)
off_command = LightOffCommand(light)

remote = RemoteControl()
remote.submit(on_command) # Sortie: Light turned ON
remote.submit(off_command) # Sortie: Light turned OFF
`
Pourquoi ?a fonctionne ?
Le pattern Command transforme une opération en objet, permettant de paramétrer des actions, les mettre en file d'attente ou les annuler.

5. Conclusion

Choisir le bon design pattern en Python nécessite une compréhension claire du problème à résoudre et des patterns disponibles. En catégorisant le problème et en analysant les avantages de chaque pattern, vous pouvez sélectionner celui qui offre la solution la plus efficace.

N'oubliez pas que les design patterns sont des outils pour améliorer votre code, et non des règles strictes à suivre. Utilisez-les judicieusement pour écrire du code Python propre, maintenable et évolutif.

6. Ressources supplémentaires

Livres :
Design Patterns: Elements of Reusable Object-Oriented Software par Erich Gamma et al.
Head First Design Patterns par Eric Freeman et Elisabeth Robson.
Sites Web :
Refactoring.Guru
Dive Into Design Patterns
Merci d'avoir lu ! N'hésitez pas à partager vos expériences avec les design patterns en Python dans les commentaires.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefa?on, veuillez contacter admin@php.cn

Outils d'IA chauds

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel PHP
1502
276
Comment gérer l'authentification de l'API dans Python Comment gérer l'authentification de l'API dans Python Jul 13, 2025 am 02:22 AM

La clé pour gérer l'authentification de l'API est de comprendre et d'utiliser correctement la méthode d'authentification. 1. Apikey est la méthode d'authentification la plus simple, généralement placée dans l'en-tête de demande ou les paramètres d'URL; 2. BasicAuth utilise le nom d'utilisateur et le mot de passe pour la transmission de codage Base64, qui convient aux systèmes internes; 3. OAuth2 doit d'abord obtenir le jeton via client_id et client_secret, puis apporter le Bearertoken dans l'en-tête de demande; 4. Afin de gérer l'expiration des jetons, la classe de gestion des jetons peut être encapsulée et rafra?chie automatiquement le jeton; En bref, la sélection de la méthode appropriée en fonction du document et le stockage en toute sécurité des informations clés sont la clé.

Expliquez les assertions Python. Expliquez les assertions Python. Jul 07, 2025 am 12:14 AM

Assert est un outil d'affirmation utilisé dans Python pour le débogage et lance une affirmation d'établissement lorsque la condition n'est pas remplie. Sa syntaxe est affirmer la condition plus les informations d'erreur facultatives, qui conviennent à la vérification de la logique interne telle que la vérification des paramètres, la confirmation d'état, etc., mais ne peuvent pas être utilisées pour la sécurité ou la vérification des entrées des utilisateurs, et doit être utilisée en conjonction avec des informations d'invite claires. Il n'est disponible que pour le débogage auxiliaire au stade de développement plut?t que pour remplacer la manipulation des exceptions.

Comment itérer sur deux listes à la fois Python Comment itérer sur deux listes à la fois Python Jul 09, 2025 am 01:13 AM

Une méthode courante pour parcourir deux listes simultanément dans Python consiste à utiliser la fonction zip (), qui appariera plusieurs listes dans l'ordre et sera la plus courte; Si la longueur de liste est incohérente, vous pouvez utiliser itertools.zip_langest () pour être le plus long et remplir les valeurs manquantes; Combiné avec enumerate (), vous pouvez obtenir l'index en même temps. 1.zip () est concis et pratique, adapté à l'itération des données appariées; 2.zip_langest () peut remplir la valeur par défaut lorsqu'il s'agit de longueurs incohérentes; 3. L'énumération (zip ()) peut obtenir des indices pendant la traversée, en répondant aux besoins d'une variété de scénarios complexes.

Que sont les indices de type Python? Que sont les indices de type Python? Jul 07, 2025 am 02:55 AM

TypeHintsInpythonsolvetheproblebandofambigu?té et opposant à un montant de type de type parallèlement au développement de l'aménagement en fonction des types de type.

Que sont les itérateurs Python? Que sont les itérateurs Python? Jul 08, 2025 am 02:56 AM

Inpython, itérateurslawjectsThatallowloopingthroughCollectionsbyImpleting __iter __ () et__Next __ (). 1) iteratorsworkVeatheitorat

Tutoriel Python Fastapi Tutoriel Python Fastapi Jul 12, 2025 am 02:42 AM

Pour créer des API modernes et efficaces à l'aide de Python, FastAPI est recommandé; Il est basé sur des invites de type Python standard et peut générer automatiquement des documents, avec d'excellentes performances. Après avoir installé FastAPI et ASGI Server Uvicorn, vous pouvez écrire du code d'interface. En définissant les itinéraires, en écrivant des fonctions de traitement et en renvoyant des données, les API peuvent être rapidement construites. Fastapi prend en charge une variété de méthodes HTTP et fournit des systèmes de documentation SwaggerUI et Redoc générés automatiquement. Les paramètres d'URL peuvent être capturés via la définition du chemin, tandis que les paramètres de requête peuvent être implémentés en définissant des valeurs par défaut pour les paramètres de fonction. L'utilisation rationnelle des modèles pydantiques peut aider à améliorer l'efficacité du développement et la précision.

Comment tester une API avec Python Comment tester une API avec Python Jul 12, 2025 am 02:47 AM

Pour tester l'API, vous devez utiliser la bibliothèque des demandes de Python. Les étapes consistent à installer la bibliothèque, à envoyer des demandes, à vérifier les réponses, à définir des délais d'attente et à réessayer. Tout d'abord, installez la bibliothèque via PiPinstallRequests; Utilisez ensuite les demandes.get () ou les demandes.Post () et d'autres méthodes pour envoyer des demandes GET ou POST; Vérifiez ensuite la réponse.status_code et la réponse.json () pour vous assurer que le résultat de retour est en conformité avec les attentes; Enfin, ajoutez des paramètres de délai d'expiration pour définir l'heure du délai d'expiration et combinez la bibliothèque de réessayer pour obtenir une nouvelle tentative automatique pour améliorer la stabilité.

Portée variable python dans les fonctions Portée variable python dans les fonctions Jul 12, 2025 am 02:49 AM

Dans Python, les variables définies à l'intérieur d'une fonction sont des variables locales et ne sont valides que dans la fonction; Les variables globales sont définies à l'extérieur qui peuvent être lues n'importe où. 1. Les variables locales sont détruites lors de l'exécution de la fonction; 2. La fonction peut accéder aux variables globales mais ne peut pas être modifiée directement, donc le mot-clé global est requis; 3. Si vous souhaitez modifier les variables de fonction externes dans les fonctions imbriquées, vous devez utiliser le mot-clé non local; 4. Les variables avec le même nom ne se affectent pas dans différentes lunettes; 5. Global doit être déclaré lors de la modification des variables globales, sinon une erreur non liée à la dorsale sera augmentée. Comprendre ces règles permet d'éviter les bogues et d'écrire des fonctions plus fiables.

See all articles