


Comment les compréhensions de listes imbriquées peuvent-elles simplifier la création de listes complexes??
Oct 28, 2024 pm 07:08 PMExplication de la compréhension des listes imbriquées
Les compréhensions des listes imbriquées offrent un moyen concis de créer dynamiquement des listes complexes à l'aide d'itérables. Bien que leur fonctionnalité puisse être comprise via des boucles for équivalentes, leur approche systématique permet d'appliquer le concept à travers différents exemples.
Syntaxe et traduction
Les compréhensions de listes imbriquées suivent la syntaxe?:
[exp2([exp1 for x in xSet]) for y in ySet]
En décomposant cela, vous constaterez que pour chaque élément y dans ySet, une liste interne est créée. Dans cette liste interne, une expression exp1 est évaluée pour chaque élément x dans xSet. Enfin, la compréhension de la liste externe évalue exp2 en utilisant chaque liste interne créée.
Exemples simplifiés
- Compréhension aplatie?:
[exp1 for x in xSet for y in ySet]
équivalent pour la boucle?:
result = [] for x in xSet: for y in ySet: result.append(exp1)
- Liste des listes Compréhension?:
[[exp1 for x in xSet] for y in ySet]
équivalent pour la boucle :
result = [] for y in ySet: innerResult = [] for x in xSet: innerResult.append(exp1) result.append(innerResult)
Application systématique
Pour généraliser, les étapes suivantes peuvent être suivies?:
- Commencer par la boucle for la plus interne.
- Créez une nouvelle liste en utilisant l'expression dans cette boucle for pour chaque élément de son itérable.
- Passez à la boucle for suivante et utilisez la liste créée à l'étape précédente comme itérable.
- Répétez les étapes 1 à 3 pour chaque boucle for dans la compréhension.
- Utilisez l'expression externe (exp2) pour évaluer le résultat final.
N'oubliez pas que l'imbrication des boucles for se déroule de gauche à droite, permettant des transformations de liste complexes dans une syntaxe concise.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undress AI Tool
Images de déshabillage gratuites

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Article chaud

Outils chauds

Bloc-notes++7.3.1
éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

L'Unittest et Pytest de Python sont deux cadres de test largement utilisés qui simplifient l'écriture, l'organisation et l'exécution de tests automatisés. 1. Les deux prennent en charge la découverte automatique des cas de test et fournissent une structure de test claire: unittest définit les tests en héritant de la classe TestCase et en commen?ant par Test \ _; PyTest est plus concis, il suffit d'une fonction à partir de test \ _. 2. Ils ont tous un support d'affirmation intégré: Unittest fournit ASSERTEQUAL, ASSERTTRUE et d'autres méthodes, tandis que PyTest utilise une instruction ASSERT améliorée pour afficher automatiquement les détails de l'échec. 3. Tous ont des mécanismes pour gérer la préparation et le nettoyage des tests: l'ONU

Les paramètres par défaut de Python ne sont initialisés qu'une seule fois lorsqu'ils sont définis. Si des objets mutables (tels que des listes ou des dictionnaires) sont utilisés comme paramètres par défaut, un comportement inattendu peut être causé. Par exemple, lors de l'utilisation d'une liste vide comme paramètre par défaut, plusieurs appels à la fonction réutiliseront la même liste au lieu de générer une nouvelle liste à chaque fois. Les problèmes causés par ce comportement comprennent: 1. Partage inattendu des données entre les appels de fonction; 2. Les résultats des appels suivants sont affectés par les appels précédents, augmentant la difficulté de débogage; 3. Il provoque des erreurs logiques et est difficile à détecter; 4. Il est facile de confondre les développeurs novices et expérimentés. Pour éviter les problèmes, la meilleure pratique consiste à définir la valeur par défaut sur nulle et à créer un nouvel objet à l'intérieur de la fonction, comme utiliser my_list = aucun au lieu de my_list = [] et initialement dans la fonction

La dérivation de la liste, du dictionnaire et de la collection de Python améliore la lisibilité du code et l'efficacité de l'écriture grace à la syntaxe concise. Ils conviennent pour simplifier les opérations d'itération et de conversion, telles que le remplacement des boucles multi-lignes par du code unique pour implémenter la transformation ou le filtrage des éléments. 1. Les compréhensions de la liste telles que [x2ForxInRange (10)] peuvent générer directement des séquences carrées; 2. Comprehensions du dictionnaire telles que {x: x2forxinrange (5)} Exprime clairement le mappage des valeurs clés; 3. Le filtrage conditionnel tel que [xforxinnumbersifx% 2 == 0] rend la logique de filtrage plus intuitive; 4. Des conditions complexes peuvent également être intégrées, comme la combinaison de filtrage multi-conditionnement ou d'expressions ternaires; Mais les opérations excessives de nidification ou d'effets secondaires doivent être évitées pour éviter de réduire la maintenabilité. L'utilisation rationnelle de la dérivation peut réduire

Python fonctionne bien avec d'autres langues et systèmes dans l'architecture microservice, la clé est de savoir comment chaque service s'exécute indépendamment et communique efficacement. 1. à l'aide d'API standard et de protocoles de communication (tels que HTTP, REST, GRPC), Python construit des API via des frameworks tels que Flask et Fastapi, et utilise des demandes ou HTTPX pour appeler d'autres services linguistiques; 2. Utiliser des courtiers de messages (tels que Kafka, Rabbitmq, Redis) pour réaliser la communication asynchrone, les services Python peuvent publier des messages pour que d'autres consommateurs de langues soient traités, améliorant le découplage du système, l'évolutivité et la tolérance aux défauts; 3. Développer ou intégrer d'autres temps de langue (comme Jython) via C / C pour réaliser la mise en ?uvre

PythonisidealfordataanalysysydUetonumpyandpandas.1) NumpyExcelsAtnumericalcomputations withfast, multidimensionalarraysandvectorizedoperationslikenp.sqrt (). 2) PandashandlesstructuredDatawitheSeriesandData

La programmation dynamique (DP) optimise le processus de solution en décomposant des problèmes complexes en sous-problèmes plus simples et en stockant leurs résultats pour éviter les calculs répétés. Il existe deux méthodes principales: 1. De haut en bas (mémorisation): décomposer récursivement le problème et utiliser le cache pour stocker les résultats intermédiaires; 2. Affaisant (tableau): construire de manière itérative des solutions à partir de la situation de base. Convient pour des scénarios où des valeurs maximales / minimales, des solutions optimales ou des sous-problèmes qui se chevauchent sont nécessaires, tels que les séquences de Fibonacci, les problèmes de randonnée, etc. Dans Python, il peut être mis en ?uvre par le biais de décorateurs ou des tableaux, et l'attention doit être accordée à l'identification des relations récursives, à la définition de la situation de la banquette et à l'optimisation de la complexité de l'espace.

Pour implémenter un itérateur personnalisé, vous devez définir les méthodes __iter__ et __Next__ dans la classe. ① La méthode __iter__ renvoie l'objet itérateur lui-même, généralement soi, pour être compatible avec des environnements itératifs tels que pour les boucles; ② La méthode __Next__ contr?le la valeur de chaque itération, renvoie l'élément suivant dans la séquence, et lorsqu'il n'y a plus d'éléments, une exception d'arrêt doit être lancée; ③ L'état doit être suivi correctement et les conditions de terminaison doivent être définies pour éviter les boucles infinies; ④ Logique complexe telle que le filtrage des lignes de fichiers et faire attention au nettoyage des ressources et à la gestion de la mémoire; ⑤ Pour une logique simple, vous pouvez envisager d'utiliser le rendement de la fonction du générateur à la place, mais vous devez choisir une méthode appropriée basée sur le scénario spécifique.

Les tendances futures de Python incluent l'optimisation des performances, les invites de type plus fortes, la montée des temps d'exécution alternatifs et la croissance continue du champ AI / ML. Premièrement, CPYthon continue d'optimiser, améliorant les performances grace à un temps de démarrage plus rapide, à l'optimisation des appels de fonction et à des opérations entières proposées; Deuxièmement, les invites de type sont profondément intégrées dans les langues et les cha?nes d'outils pour améliorer l'expérience de sécurité et de développement du code; Troisièmement, des temps d'exécution alternatifs tels que Pyscript et Nuitka offrent de nouvelles fonctions et des avantages de performance; Enfin, les domaines de l'IA et de la science des données continuent de se développer, et les bibliothèques émergentes favorisent un développement et une intégration plus efficaces. Ces tendances indiquent que Python s'adapte constamment aux changements technologiques et maintient sa position principale.
