


Lancer un projet d'apprentissage automatique peut sembler écrasant, comme résoudre un gros casse-tête. Bien que je sois engagé dans mon parcours d'apprentissage automatique depuis un certain temps maintenant, je suis ravi de commencer à enseigner et à guider d'autres personnes désireuses d'apprendre. Aujourd'hui, je vais vous montrer comment créer votre premier pipeline de Machine Learning (ML)?! Cet outil simple mais puissant vous aidera à créer et organiser efficacement des modèles ML. Allons-y.
Le problème?: gérer le flux de travail d'apprentissage automatique
Lorsque j'ai débuté avec l'apprentissage automatique, l'un des défis auxquels j'ai été confronté était de m'assurer que mon flux de travail était structuré et reproductible. La mise à l’échelle des fonctionnalités, la formation des modèles et l’élaboration de prédictions semblaient souvent être des étapes décousues – sujettes à l’erreur humaine si elles étaient gérées manuellement à chaque fois. C’est là qu’intervient le concept de pipeline.
Un pipeline ML vous permet de séquencer plusieurs étapes de traitement ensemble, garantissant ainsi la cohérence et réduisant la complexité. Avec la bibliothèque Python scikit-learn, créer un pipeline est simple et oserais-je dire, délicieux?!
Les ingrédients du pipeline
Voici le code qui a donné vie à mon pipeline ML?:
from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_classification import numpy as np from sklearn.model_selection import train_test_split steps = [("Scaling", StandardScaler()),("classifier",LogisticRegression())] pipe = Pipeline(steps) pipe X,y = make_classification(random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) pipe.fit(X_train, y_train) pipe.predict(X_test) pipe.score(X_test, y_test)
Décomposons-le?:
Préparation des données?: J'ai généré des données de classification synthétiques à l'aide de make_classification. Cela m'a permis de tester le pipeline sans avoir besoin d'un ensemble de données externe.
étapes du pipeline?: Le pipeline se compose de deux composants principaux?:
StandardScaler?: garantit que toutes les fonctionnalités sont mises à l'échelle pour avoir une moyenne et une variance unitaire nulles.
LogisticRegression?: Un classificateur simple mais puissant pour prédire les résultats binaires.
Formation et évaluation?: à l'aide du pipeline, j'ai formé le modèle et évalué ses performances en un seul flux transparent. La méthode pipe.score() a fourni un moyen rapide de mesurer la précision du modèle.
Ce que vous pouvez apprendre
Construire ce pipeline est plus qu’un simple exercice ; c'est l'occasion d'apprendre les concepts clés du ML?:
La modularité est importante?: Les pipelines modularisent le flux de travail d'apprentissage automatique, ce qui facilite l'échange de composants (par exemple, en essayant un autre scaler ou classificateur).
La reproductibilité est la clé?: En standardisant le prétraitement et la formation des modèles, les pipelines minimisent le risque d'erreurs lors de la réutilisation ou du partage du code.
Augmentation de l'efficacité?: L'automatisation des taches répétitives telles que la mise à l'échelle et la prédiction permet de gagner du temps et garantit la cohérence entre les expériences.
Résultats et réflexions
Le pipeline a bien fonctionné sur mon ensemble de données synthétiques, atteignant un score de précision de plus de 90 %. Bien que ce résultat ne soit pas révolutionnaire, l’approche structurée donne la confiance nécessaire pour aborder des projets plus complexes.
Ce qui m'excite le plus, c'est de partager ce processus avec les autres. Si vous débutez, ce pipeline est votre première étape vers la ma?trise des workflows d'apprentissage automatique. Et pour ceux qui revisitent les fondamentaux, c’est une belle remise à niveau.
Voici ce que vous pouvez explorer ensuite?:
- Expérimentez avec des étapes de prétraitement plus complexes, comme la sélection de fonctionnalités ou l'encodage de variables catégorielles.
- Utilisez d'autres algorithmes, tels que des arbres de décision ou des modèles d'ensemble, dans le cadre du pipeline.
- Explorez des techniques avancées telles que le réglage des hyperparamètres à l'aide de GridSearchCV combiné à des pipelines.
- La création de ce pipeline marque le début d’un voyage partagé – un voyage qui promet d’être aussi fascinant que stimulant. Que vous appreniez à mes c?tés ou que vous revisitiez les fondamentaux.
Continuons à grandir ensemble, un pipeline à la fois?!
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undress AI Tool
Images de déshabillage gratuites

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Article chaud

Outils chauds

Bloc-notes++7.3.1
éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

L'Unittest et Pytest de Python sont deux cadres de test largement utilisés qui simplifient l'écriture, l'organisation et l'exécution de tests automatisés. 1. Les deux prennent en charge la découverte automatique des cas de test et fournissent une structure de test claire: unittest définit les tests en héritant de la classe TestCase et en commen?ant par Test \ _; PyTest est plus concis, il suffit d'une fonction à partir de test \ _. 2. Ils ont tous un support d'affirmation intégré: Unittest fournit ASSERTEQUAL, ASSERTTRUE et d'autres méthodes, tandis que PyTest utilise une instruction ASSERT améliorée pour afficher automatiquement les détails de l'échec. 3. Tous ont des mécanismes pour gérer la préparation et le nettoyage des tests: l'ONU

PythonisidealfordataanalysysydUetonumpyandpandas.1) NumpyExcelsAtnumericalcomputations withfast, multidimensionalarraysandvectorizedoperationslikenp.sqrt (). 2) PandashandlesstructuredDatawitheSeriesandData

La programmation dynamique (DP) optimise le processus de solution en décomposant des problèmes complexes en sous-problèmes plus simples et en stockant leurs résultats pour éviter les calculs répétés. Il existe deux méthodes principales: 1. De haut en bas (mémorisation): décomposer récursivement le problème et utiliser le cache pour stocker les résultats intermédiaires; 2. Affaisant (tableau): construire de manière itérative des solutions à partir de la situation de base. Convient pour des scénarios où des valeurs maximales / minimales, des solutions optimales ou des sous-problèmes qui se chevauchent sont nécessaires, tels que les séquences de Fibonacci, les problèmes de randonnée, etc. Dans Python, il peut être mis en ?uvre par le biais de décorateurs ou des tableaux, et l'attention doit être accordée à l'identification des relations récursives, à la définition de la situation de la banquette et à l'optimisation de la complexité de l'espace.

Pour implémenter un itérateur personnalisé, vous devez définir les méthodes __iter__ et __Next__ dans la classe. ① La méthode __iter__ renvoie l'objet itérateur lui-même, généralement soi, pour être compatible avec des environnements itératifs tels que pour les boucles; ② La méthode __Next__ contr?le la valeur de chaque itération, renvoie l'élément suivant dans la séquence, et lorsqu'il n'y a plus d'éléments, une exception d'arrêt doit être lancée; ③ L'état doit être suivi correctement et les conditions de terminaison doivent être définies pour éviter les boucles infinies; ④ Logique complexe telle que le filtrage des lignes de fichiers et faire attention au nettoyage des ressources et à la gestion de la mémoire; ⑤ Pour une logique simple, vous pouvez envisager d'utiliser le rendement de la fonction du générateur à la place, mais vous devez choisir une méthode appropriée basée sur le scénario spécifique.

Les tendances futures de Python incluent l'optimisation des performances, les invites de type plus fortes, la montée des temps d'exécution alternatifs et la croissance continue du champ AI / ML. Premièrement, CPYthon continue d'optimiser, améliorant les performances grace à un temps de démarrage plus rapide, à l'optimisation des appels de fonction et à des opérations entières proposées; Deuxièmement, les invites de type sont profondément intégrées dans les langues et les cha?nes d'outils pour améliorer l'expérience de sécurité et de développement du code; Troisièmement, des temps d'exécution alternatifs tels que Pyscript et Nuitka offrent de nouvelles fonctions et des avantages de performance; Enfin, les domaines de l'IA et de la science des données continuent de se développer, et les bibliothèques émergentes favorisent un développement et une intégration plus efficaces. Ces tendances indiquent que Python s'adapte constamment aux changements technologiques et maintient sa position principale.

Le module de socket de Python est la base de la programmation réseau, offrant des fonctions de communication réseau de bas niveau, adaptées à la création d'applications client et serveur. Pour configurer un serveur TCP de base, vous devez utiliser socket.socket () pour créer des objets, lier des adresses et des ports, appelez .Listen () pour écouter les connexions et accepter les connexions client via .Accept (). Pour créer un client TCP, vous devez créer un objet Socket et appeler .Connect () pour vous connecter au serveur, puis utiliser .sendall () pour envoyer des données et .recv () pour recevoir des réponses. Pour gérer plusieurs clients, vous pouvez utiliser 1. Threads: Démarrez un nouveau thread à chaque fois que vous vous connectez; 2. E / S asynchrone: Par exemple, la bibliothèque Asyncio peut obtenir une communication non bloquante. Choses à noter

Le polymorphisme est un concept de base dans la programmation orientée objet Python, se référant à "une interface, plusieurs implémentations", permettant le traitement unifié de différents types d'objets. 1. Le polymorphisme est implémenté par la réécriture de la méthode. Les sous-classes peuvent redéfinir les méthodes de classe parent. Par exemple, la méthode Spoke () de classe animale a des implémentations différentes dans les sous-classes de chiens et de chats. 2. Les utilisations pratiques du polymorphisme comprennent la simplification de la structure du code et l'amélioration de l'évolutivité, tels que l'appel de la méthode Draw () uniformément dans le programme de dessin graphique, ou la gestion du comportement commun des différents personnages dans le développement de jeux. 3. Le polymorphisme de l'implémentation de Python doit satisfaire: la classe parent définit une méthode, et la classe enfant remplace la méthode, mais ne nécessite pas l'héritage de la même classe parent. Tant que l'objet implémente la même méthode, c'est ce qu'on appelle le "type de canard". 4. Les choses à noter incluent la maintenance

La réponse principale au découpage de la liste Python est de ma?triser la syntaxe [start: fin: étape] et comprendre son comportement. 1. Le format de base du découpage de la liste est la liste [Démarrage: fin: étape], où le démarrage est l'index de démarrage (inclus), la fin est l'index final (non inclus), et l'étape est la taille de pas; 2. OMIT START Par défaut Démarrer à partir de 0, omettre la fin par défaut à la fin, omettez l'étape par défaut à 1; 3. Utilisez My_List [: N] pour obtenir les N premiers éléments et utilisez My_List [-N:] pour obtenir les N derniers éléments; 4. Utilisez l'étape pour sauter des éléments, tels que My_List [:: 2] pour obtenir des chiffres pair, et les valeurs d'étape négatives peuvent inverser la liste; 5. Les malentendus communs incluent l'indice final pas
