


De puissantes stratégies de test Python pour améliorer la qualité du code
Dec 25, 2024 am 03:13 AMEn tant que développeur Python, j'ai découvert que la mise en ?uvre de stratégies de test robustes est cruciale pour maintenir la qualité et la fiabilité du code. Au fil des années, j'ai exploré diverses techniques et outils qui ont considérablement amélioré mes pratiques de test. Permettez-moi de partager mes idées sur huit stratégies de test Python puissantes qui peuvent vous aider à améliorer la qualité de votre code.
Pytest est mon framework de test préféré en raison de sa simplicité et de son extensibilité. Son système de montage est particulièrement puissant, me permettant de mettre en place et de démonter efficacement des environnements de test. Voici un exemple de la fa?on dont j'utilise les luminaires?:
import pytest @pytest.fixture def sample_data(): return [1, 2, 3, 4, 5] def test_sum(sample_data): assert sum(sample_data) == 15 def test_length(sample_data): assert len(sample_data) == 5
La fonctionnalité de paramétrage de Pytest est un autre joyau. Cela me permet d'exécuter le même test avec plusieurs entrées, réduisant ainsi la duplication de code?:
import pytest @pytest.mark.parametrize("input,expected", [ ("hello", 5), ("python", 6), ("testing", 7) ]) def test_string_length(input, expected): assert len(input) == expected
L'écosystème de plugins de pytest est vaste et offre des solutions pour divers besoins de tests. L'un de mes favoris est pytest-cov pour l'analyse de la couverture de code.
Les tests basés sur les propriétés avec la bibliothèque d'hypothèses ont changé la donne dans mon approche de test. Il génère automatiquement des cas de test, révélant souvent des cas extrêmes auxquels je n'aurais pas pensé?:
from hypothesis import given, strategies as st @given(st.lists(st.integers())) def test_sum_of_list_is_positive(numbers): assert sum(numbers) >= 0 or sum(numbers) < 0
Les moqueries et les correctifs sont des techniques essentielles pour isoler des unités de code pendant les tests. Le module unittest.mock fournit des outils puissants à cet effet?:
from unittest.mock import patch def get_data_from_api(): # Actual implementation would make an API call pass def process_data(data): return data.upper() def test_process_data(): with patch('__main__.get_data_from_api') as mock_get_data: mock_get_data.return_value = "test data" result = process_data(get_data_from_api()) assert result == "TEST DATA"
Mesurer la couverture du code est crucial pour identifier les parties non testées de votre base de code. J'utilise cover.py en conjonction avec pytest pour générer des rapports de couverture complets?:
# Run tests with coverage # pytest --cov=myproject tests/ # Generate HTML report # coverage html
Le développement piloté par le comportement (BDD) avec behavior m'a aidé à combler le fossé entre les parties prenantes techniques et non techniques. Rédiger des tests en langage naturel améliore la communication et la compréhension?:
# features/calculator.feature Feature: Calculator Scenario: Add two numbers Given I have entered 5 into the calculator And I have entered 7 into the calculator When I press add Then the result should be 12 on the screen
# steps/calculator_steps.py from behave import given, when, then from calculator import Calculator @given('I have entered {number:d} into the calculator') def step_enter_number(context, number): if not hasattr(context, 'calculator'): context.calculator = Calculator() context.calculator.enter_number(number) @when('I press add') def step_press_add(context): context.result = context.calculator.add() @then('the result should be {expected:d} on the screen') def step_check_result(context, expected): assert context.result == expected
Les tests de performances sont souvent négligés, mais ils sont cruciaux pour maintenir un code efficace. J'utilise pytest-benchmark pour mesurer et comparer les temps d'exécution?:
def fibonacci(n): if n < 2: return n return fibonacci(n-1) + fibonacci(n-2) def test_fibonacci_performance(benchmark): result = benchmark(fibonacci, 10) assert result == 55
Les tests de mutation avec des outils comme mutmut ont été révélateurs dans l'évaluation de la qualité de mes suites de tests. Il introduit de petits changements (mutations) dans le code et vérifie si les tests détectent ces changements?:
mutmut run --paths-to-mutate=myproject/
L'intégration et les tests de bout en bout sont essentiels pour garantir que les différentes parties du système fonctionnent correctement ensemble. Pour les applications web, j'utilise souvent Selenium?:
from selenium import webdriver from selenium.webdriver.common.keys import Keys def test_search_in_python_org(): driver = webdriver.Firefox() driver.get("http://www.python.org") assert "Python" in driver.title elem = driver.find_element_by_name("q") elem.clear() elem.send_keys("pycon") elem.send_keys(Keys.RETURN) assert "No results found." not in driver.page_source driver.close()
Organiser efficacement les tests est crucial pour maintenir une suite de tests saine, en particulier dans les grands projets. Je suis une structure qui reflète le code principal de l'application?:
myproject/ __init__.py module1.py module2.py tests/ __init__.py test_module1.py test_module2.py
L'intégration continue (CI) joue un r?le essentiel dans ma stratégie de tests. J'utilise des outils comme Jenkins ou GitHub Actions pour exécuter automatiquement des tests à chaque commit?:
import pytest @pytest.fixture def sample_data(): return [1, 2, 3, 4, 5] def test_sum(sample_data): assert sum(sample_data) == 15 def test_length(sample_data): assert len(sample_data) == 5
Maintenir une suite de tests saine nécessite une attention régulière. Je révise et mets à jour périodiquement les tests, en supprimant les tests obsolètes et en ajoutant de nouveaux tests pour les nouvelles fonctionnalités ou les bogues découverts. Je m'efforce également de maintenir un temps d'exécution des tests raisonnable, en séparant souvent les tests unitaires rapides des tests d'intégration plus lents.
Le développement piloté par les tests (TDD) est devenu une partie intégrante de mon flux de travail. écrire des tests avant d'implémenter des fonctionnalités m'aide à clarifier les exigences et à concevoir de meilleures interfaces?:
import pytest @pytest.mark.parametrize("input,expected", [ ("hello", 5), ("python", 6), ("testing", 7) ]) def test_string_length(input, expected): assert len(input) == expected
Les tests Fuzz sont une autre technique que j'ai trouvée utile, en particulier pour les fonctions d'analyse et de traitement des entrées. Cela implique de fournir des entrées aléatoires ou inattendues pour trouver des vulnérabilités ou des bugs potentiels?:
from hypothesis import given, strategies as st @given(st.lists(st.integers())) def test_sum_of_list_is_positive(numbers): assert sum(numbers) >= 0 or sum(numbers) < 0
Gérer les dépendances externes dans les tests peut être difficile. J'utilise souvent l'injection de dépendances pour rendre mon code plus testable?:
from unittest.mock import patch def get_data_from_api(): # Actual implementation would make an API call pass def process_data(data): return data.upper() def test_process_data(): with patch('__main__.get_data_from_api') as mock_get_data: mock_get_data.return_value = "test data" result = process_data(get_data_from_api()) assert result == "TEST DATA"
Les tests de code asynchrone sont devenus de plus en plus importants avec l'essor de la programmation asynchrone en Python. Le plugin pytest-asyncio a été d'une valeur inestimable pour cela?:
# Run tests with coverage # pytest --cov=myproject tests/ # Generate HTML report # coverage html
Tester la gestion des erreurs et les cas extrêmes est crucial pour un code robuste. Je m'assure d'inclure des tests pour les exceptions attendues et les conditions aux limites?:
# features/calculator.feature Feature: Calculator Scenario: Add two numbers Given I have entered 5 into the calculator And I have entered 7 into the calculator When I press add Then the result should be 12 on the screen
Les appareils paramétrés dans pytest permettent des configurations de test plus flexibles et réutilisables?:
# steps/calculator_steps.py from behave import given, when, then from calculator import Calculator @given('I have entered {number:d} into the calculator') def step_enter_number(context, number): if not hasattr(context, 'calculator'): context.calculator = Calculator() context.calculator.enter_number(number) @when('I press add') def step_press_add(context): context.result = context.calculator.add() @then('the result should be {expected:d} on the screen') def step_check_result(context, expected): assert context.result == expected
Pour les tests dépendants des bases de données, j'utilise des bases de données en mémoire ou je crée des bases de données temporaires pour garantir l'isolement et la rapidité des tests?:
def fibonacci(n): if n < 2: return n return fibonacci(n-1) + fibonacci(n-2) def test_fibonacci_performance(benchmark): result = benchmark(fibonacci, 10) assert result == 55
Les tests de régression visuelle ont été utiles pour détecter les modifications inattendues de l'interface utilisateur dans les applications Web. Des outils comme pytest-playwright combinés à des bibliothèques de comparaison visuelle peuvent automatiser ce processus?:
mutmut run --paths-to-mutate=myproject/
La mise en ?uvre de ces stratégies de tests a considérablement amélioré la qualité et la fiabilité de mes projets Python. Il est important de se rappeler que les tests sont un processus continu et que les stratégies spécifiques que vous utilisez doivent évoluer avec les besoins de votre projet. Un examen et un affinement réguliers de votre approche de test contribueront à garantir que votre base de code reste robuste et maintenable au fil du temps.
101 livres
101 Books est une société d'édition basée sur l'IA cofondée par l'auteur Aarav Joshi. En tirant parti de la technologie avancée de l'IA, nous maintenons nos co?ts de publication incroyablement bas (certains livres co?tent aussi peu que 4?$), ce qui rend des connaissances de qualité accessibles à tous.
Découvrez notre livre Golang Clean Code disponible sur Amazon.
Restez à l'écoute des mises à jour et des nouvelles passionnantes. Lorsque vous achetez des livres, recherchez Aarav Joshi pour trouver plus de nos titres. Utilisez le lien fourni pour profiter de réductions spéciales?!
Nos créations
N'oubliez pas de consulter nos créations?:
Centre des investisseurs | Centre des investisseurs espagnol | Investisseur central allemand | Vie intelligente | époques & échos | Mystères déroutants | Hindutva | Développeur élite | écoles JS
Nous sommes sur Medium
Tech Koala Insights | Epoques & Echos Monde | Support Central des Investisseurs | Mystères déroutants Medium | Sciences & Epoques Medium | Hindutva moderne
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undress AI Tool
Images de déshabillage gratuites

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Article chaud

Outils chauds

Bloc-notes++7.3.1
éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

L'Unittest et Pytest de Python sont deux cadres de test largement utilisés qui simplifient l'écriture, l'organisation et l'exécution de tests automatisés. 1. Les deux prennent en charge la découverte automatique des cas de test et fournissent une structure de test claire: unittest définit les tests en héritant de la classe TestCase et en commen?ant par Test \ _; PyTest est plus concis, il suffit d'une fonction à partir de test \ _. 2. Ils ont tous un support d'affirmation intégré: Unittest fournit ASSERTEQUAL, ASSERTTRUE et d'autres méthodes, tandis que PyTest utilise une instruction ASSERT améliorée pour afficher automatiquement les détails de l'échec. 3. Tous ont des mécanismes pour gérer la préparation et le nettoyage des tests: l'ONU

PythonisidealfordataanalysysydUetonumpyandpandas.1) NumpyExcelsAtnumericalcomputations withfast, multidimensionalarraysandvectorizedoperationslikenp.sqrt (). 2) PandashandlesstructuredDatawitheSeriesandData

La programmation dynamique (DP) optimise le processus de solution en décomposant des problèmes complexes en sous-problèmes plus simples et en stockant leurs résultats pour éviter les calculs répétés. Il existe deux méthodes principales: 1. De haut en bas (mémorisation): décomposer récursivement le problème et utiliser le cache pour stocker les résultats intermédiaires; 2. Affaisant (tableau): construire de manière itérative des solutions à partir de la situation de base. Convient pour des scénarios où des valeurs maximales / minimales, des solutions optimales ou des sous-problèmes qui se chevauchent sont nécessaires, tels que les séquences de Fibonacci, les problèmes de randonnée, etc. Dans Python, il peut être mis en ?uvre par le biais de décorateurs ou des tableaux, et l'attention doit être accordée à l'identification des relations récursives, à la définition de la situation de la banquette et à l'optimisation de la complexité de l'espace.

Pour implémenter un itérateur personnalisé, vous devez définir les méthodes __iter__ et __Next__ dans la classe. ① La méthode __iter__ renvoie l'objet itérateur lui-même, généralement soi, pour être compatible avec des environnements itératifs tels que pour les boucles; ② La méthode __Next__ contr?le la valeur de chaque itération, renvoie l'élément suivant dans la séquence, et lorsqu'il n'y a plus d'éléments, une exception d'arrêt doit être lancée; ③ L'état doit être suivi correctement et les conditions de terminaison doivent être définies pour éviter les boucles infinies; ④ Logique complexe telle que le filtrage des lignes de fichiers et faire attention au nettoyage des ressources et à la gestion de la mémoire; ⑤ Pour une logique simple, vous pouvez envisager d'utiliser le rendement de la fonction du générateur à la place, mais vous devez choisir une méthode appropriée basée sur le scénario spécifique.

Les tendances futures de Python incluent l'optimisation des performances, les invites de type plus fortes, la montée des temps d'exécution alternatifs et la croissance continue du champ AI / ML. Premièrement, CPYthon continue d'optimiser, améliorant les performances grace à un temps de démarrage plus rapide, à l'optimisation des appels de fonction et à des opérations entières proposées; Deuxièmement, les invites de type sont profondément intégrées dans les langues et les cha?nes d'outils pour améliorer l'expérience de sécurité et de développement du code; Troisièmement, des temps d'exécution alternatifs tels que Pyscript et Nuitka offrent de nouvelles fonctions et des avantages de performance; Enfin, les domaines de l'IA et de la science des données continuent de se développer, et les bibliothèques émergentes favorisent un développement et une intégration plus efficaces. Ces tendances indiquent que Python s'adapte constamment aux changements technologiques et maintient sa position principale.

Le module de socket de Python est la base de la programmation réseau, offrant des fonctions de communication réseau de bas niveau, adaptées à la création d'applications client et serveur. Pour configurer un serveur TCP de base, vous devez utiliser socket.socket () pour créer des objets, lier des adresses et des ports, appelez .Listen () pour écouter les connexions et accepter les connexions client via .Accept (). Pour créer un client TCP, vous devez créer un objet Socket et appeler .Connect () pour vous connecter au serveur, puis utiliser .sendall () pour envoyer des données et .recv () pour recevoir des réponses. Pour gérer plusieurs clients, vous pouvez utiliser 1. Threads: Démarrez un nouveau thread à chaque fois que vous vous connectez; 2. E / S asynchrone: Par exemple, la bibliothèque Asyncio peut obtenir une communication non bloquante. Choses à noter

La réponse principale au découpage de la liste Python est de ma?triser la syntaxe [start: fin: étape] et comprendre son comportement. 1. Le format de base du découpage de la liste est la liste [Démarrage: fin: étape], où le démarrage est l'index de démarrage (inclus), la fin est l'index final (non inclus), et l'étape est la taille de pas; 2. OMIT START Par défaut Démarrer à partir de 0, omettre la fin par défaut à la fin, omettez l'étape par défaut à 1; 3. Utilisez My_List [: N] pour obtenir les N premiers éléments et utilisez My_List [-N:] pour obtenir les N derniers éléments; 4. Utilisez l'étape pour sauter des éléments, tels que My_List [:: 2] pour obtenir des chiffres pair, et les valeurs d'étape négatives peuvent inverser la liste; 5. Les malentendus communs incluent l'indice final pas

Le polymorphisme est un concept de base dans la programmation orientée objet Python, se référant à "une interface, plusieurs implémentations", permettant le traitement unifié de différents types d'objets. 1. Le polymorphisme est implémenté par la réécriture de la méthode. Les sous-classes peuvent redéfinir les méthodes de classe parent. Par exemple, la méthode Spoke () de classe animale a des implémentations différentes dans les sous-classes de chiens et de chats. 2. Les utilisations pratiques du polymorphisme comprennent la simplification de la structure du code et l'amélioration de l'évolutivité, tels que l'appel de la méthode Draw () uniformément dans le programme de dessin graphique, ou la gestion du comportement commun des différents personnages dans le développement de jeux. 3. Le polymorphisme de l'implémentation de Python doit satisfaire: la classe parent définit une méthode, et la classe enfant remplace la méthode, mais ne nécessite pas l'héritage de la même classe parent. Tant que l'objet implémente la même méthode, c'est ce qu'on appelle le "type de canard". 4. Les choses à noter incluent la maintenance
