国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

ホームページ データベース mysql チュートリアル Business Intelligence 2.0: Simpler, More Accessible, Inevita

Business Intelligence 2.0: Simpler, More Accessible, Inevita

Jun 07, 2016 pm 03:06 PM
business simp

Say goodbye to complicated interfaces, disconnected analytics and shelfware. An emerging era for BI will bring simplicity, broad access and better ties between analysis and action. By Neil Raden 1, 2007 Why do three billion people a day us

Say goodbye to complicated interfaces, disconnected analytics and shelfware. An emerging era for BI will bring simplicity, broad access and better ties between analysis and action. By Neil Raden 1, 2007 Why do three billion people a day use a Web site that has a Spartan interface, a weird name (Google) and the capacity to do only one thing (the original search engine, that is, not the newer applications)? Perhaps the reason is that it always gives you more than you asked for, but what you want is usually on the first page. No one needs to install software, to do upgrades or, for that matter, to pay for it. And no one needs a training class. Contrast this with Business Intelligence (BI) tools today, with complicated interfaces, software that is very expensive to purchase and maintain, and version upgrades that are often painful. These tools generally offer very broad functionality, but somehow it's never quite enough to solve the problem. There are, at best, a few million copies licensed worldwide (across all BI vendors), yet more than a third of these seats are shelfware, according Optima Publishing's OLAP Survey 4. One could argue that phenomenon of the Web is so unique that it is unfair to measure BI's performance against it. The problem is that this is the second time BI has been eclipsed by another technology, as proven by the fact that there are more than 200 million licensed copies of Microsoft Excel in use today. Rest assured, the current era of BI is coming to an end and will be succeeded by a BI 2.0 era that promises simplicity, universal access, real-time insight, collaboration, operational intelligence, connected services and a level of information abstraction that supports far greater agility and speed of analysis. The motivation for this \"version upgrade\" for BI is the need to move analytical intelligence into operations and to shrink the gap between analysis and action. BI 1.0 Defined Despite its drawbacks, BI is not a failure. In most ways, the facility for getting information to people where and when they need it is dramatically better than it was more than a decade ago, when reports were usually paper-based and required months of development to line up the data. But if you boil BI down to its basics, it is derived from only two things: data and reports. Most of the effort in BI in the last decade has been focused on the data issue \" data integration, data quality, data cleansing, data warehouse, data mart, data modeling, data governance, data stewardship. BI tools are dependent on these efforts. Existing BI solutions are designed primarily for people who can understand the data models and who have time to build analyses from them, recall them for future use and provide information for others. Within most organizations, these experts account for about 5 percent of the salaried workforce. That was fine for a decade or so while we worked out the problems and fine-tuned the architectures and methodologies, but the people who are supposed to be served by this effort have largely voted with their feet and marched back to shadow systems, particularly spreadsheets, where the bulk of analytical work still takes place. While the number of BI users is increasing, the bulk of the increase is in passive report distribution, not active analysis, collaboration or decision-making. Along with data, reporting drives BI. What is a report? At the simplest level, a report is the rendering of information requested from existing data, with at least some level of formatting and usually some added calculations, such as subtotals and totals at a minimum. Reports are read-only. Originally, reports were distributed on either paper or microfiche, but about 25 years ago it became possible to see them electronically. Today, they can be delivered to the Web, to portals, to cell phones, PDAs -- just about anywhere. Making reports \"interactive\" doesn't really change their nature. The ability to select parameters, for instance, is actually a reporting application surrounding just another report. The ability to navigate through the elements of the data model interactively, such as OLAP, ultimately ends up as the visual display of just another report. No matter how many ways the fetching and formatting of data is embellished, it is still a report. Some OLAP tools are not read-only, but their use represents a tiny fraction of the BI use which, in turn, is an almost imperceptible fraction of the daily use of alternatives, especially spreadsheets. BI 2.0: What to Expect The new era of BI, which is already here, goes far beyond data and reporting. BI is becoming proactive, real-time, operational, integrated with business processes, and extending beyond the boundaries of the organization. To become pervasive and grow out of its reporting niche, BI has to provide simple, personal analytical tools on an as-needed basis with a minimal footprint and cost. Rather than relying solely on a rigid metaphor like data warehousing, BI needs the ability to access data anywhere it can be found and to performing integration on the fly, if necessary. Locating the right information to solve problems must be a semantic process, not requiring knowledge of data structures or canonical forms. Directed search, based on the meanings of and relationships among objects, allows practically any person or service to find what is needed without assistance, whether it is structured information like relational databases, message queues, logs, web services or even unstructured content. The Web was not just a brilliant idea, it was and is a world-changing phenomenon. Yet even in light of this success, it is quickly moving to an entirely new plane of existence, one that is more collaborative, intelligent, rich, semantically aware and simple. Web 2.0 is about closing the loop, from being a collection of web pages to a being the single platform for just about everything. The physical resources are in place and attractively priced, the open standards are evolving without fracturing the confederacy of technology players, large and small. The missing piece is the semantic technology, but even that is progressing nicely as semantics pure plays are gobbled up by more well-heeled operations like IBM, Google and webMethods. BI needs a 2.0 initiative too. BI 2.0 won't replace BI, it will extend it. Current BI capabilities are well-suited to many tasks, such as individualized dashboards of overnight data or providing a rich environment for interactive exploring of data, by people and by algorithms. But current BI practices have always been weak dealing with the unexpected and the urgent because of their \"data first\" orientation. Spreadsheets shine here, but they lack too many architectural prerequisites to be useful, such as collaboration, security, abstraction and versioning, among others. If spreadsheet tools develop these characteristics, and they are heading in that direction, they will not usurp BI, they will become BI. Game Changers BI 2.0 will disrupt the BI industry in quite a few ways, and foot-dragging can be expected. Some more obvious effects will be:

  • Convergence: The unnatural separation of BI technology and staff from the rest of the operations of the enterprise will fade as BI becomes ubiquitous and mission-critical.
  • Batch Data Warehousing: This activity will continue, but at a reduced rate as the need for information exchange with partners, customers, regulators and other stakeholders become a 24/7 proposition. Faster computers, more memory and better metadata (semantic models) will support better data comprehension and reduce the need for data integration.
  • Methodologies: Data warehouse methodologies that have been laid down and tuned for the past decade will take a while to pry loose from the collective consciousness. Many best practices will be largely invalidated by BI 2.0 and new ones will emerge, but conventional wisdom is tenacious. Expect a lot of friction here. Remember 3NF versus Star Schema MOLAP versus ROLAP?
  • The \"Pyramid\": This model of BI usage needs to be scrapped. The idea of separating people into bands of a pyramid based in whether they are power users or report readers never worked in the first place. Even \"unsophisticated\" users had a need to do a little modeling once a while, that's why they have Excel. In BI 2.0, roles are infinitely malleable and a person can operate in different roles simultaneously.
  • BI Licensing: It's very likely that BI software sales and licensing will evolve, too. If organizations can transform from 100 BI users to 10,000 in a month, the market will not allow the incumbents to reap a 100x windfall in revenue. Open-source and On-Demand channels will put more pressure on the traditional vendors to retire expensive, per-seat perpetual licenses.
  • Data Comprehension: Data integration is a painstaking process that is sifted through by people, and then the process is automated with a tool. Tools are emerging that can take over the tedious integration work, at least to some extent, and the rise of Master Data Management (MDM) hubs can further reduce the time-consuming work load. Coupled with better semantics-based metadata, on-the-fly data comprehension solutions -- for both internal data and for connected flows of data from partners \" will be emerging within the next 12-18 months.
Close the Loop Today, analytics is a singular process. An individual views a report in some form or creates a query to understand something. No matter how sophisticated or nave, the result is always the same (assuming it works); the analyst has informed his or her opinion or hypothesis, but the analytical tool stops there. It isn't possible to replay the steps and show others how the question was resolved. Nor is it possible, without a custom-made application, to transfer this new knowledge to a system or service that can act on it immediately. Nor is it possible -- again, without building an application -- to track the results of the decision explicitly (as in, \"Orville, the action you took on pricing based on the new parameters that entered the system on Tuesday are showing a marked improvement in on-time arrivals at the terminal.\"). Delivering such capabilities would bring a Nirvana of decision support, something we have all been envisioning for a decade or more, but BI in its current state is not designed to close the loop. That's the promise of BI 2.0, and, in fact, it's the single driving reason for this new era to emerge. Try New Thinking Learning new skills is important and it's easy. What's difficult is wrapping your brain around all of this and getting ready to walk away from what you now accept as the correct approach. For instance, here are six BI 1.0 fallacies that fall by the wayside in the BI 2.0 era:
BI 1.0 Fallacies BI 2.0 Realities
Most users want to be spoon-fed information and will never take the initiative to create their own environment or investigate the best way to get the answers they need. The Consumer Web invalidates this idea. When given simple tools to do something that is important and/or useful to them, people find a way to \"mash up\" what they need.
Vendors will obfuscate and slow down the drive for simpler and more affordable tools to preserve their bases They will, but demographics will pressure them. Most BI \"users\" will be members of a generation that lives in technology and will reject the functionality of current BI
Only air traffic controllers and credit card approval applications need real-time data The availability of fresh data, from ever-widening sources, generates its own demand
Analytics cannot be supported until there is an enterprise data warehouse, with a metadata repository, data stewards and a comprehensive data model that represents the \"single version of the truth.\" Data comprehension will displace data warehousing, to some extent. The single version of the truth will give way to context, contingency and the need to relate information quickly from many sources
Operational systems cannot be queried for analytics There is no longer a good reason for this prohibition. In fact, with SOA, it doesn't even make sense.
Data must exist in a persistent data store for analytics Message queues, logs, sensors \" transient data and caches, temporary aggregates, lingering partial results files \" all of these can be leveraged now with the resources at hand.
Prepare for the Inevitable BI 2.0 is a natural evolution, but it isn't happening in a smooth, continuous fashion. It's more tectonic; forces build and changes happen abruptly. Enterprise technologies tend to be sticky because of their cost -- not just to implement but also to replace. However, all enterprise applications are following the lead of the Web, especially Web 2.0. With billions of daily users, the Web is the cohort for a massive longitudinal study. The results are in. People love collaboration, social networks, mash-up's, no-cost software, versionless software and the ability to get what they need without a lot of ceremony. BI 2.0 is inevitable. What should you do to prepare? Mostly, readjust your thinking so you are open to the best offers. Here are six ideas that will give you to start:
  • 1. Recognize the situation \" People and technology have shifted to a new plane
  • 2. Rethink analytics \" Informing people to make better decisions is out; changing the nature of work is in
  • 3. Think out of the BI box \" Is compartmentalized security logical? Is role-based BI provisioning useful?
  • 4. Shift your focus from data to people \" Pretend data is like water. Now what do you do?
  • 5. Think less about process and more about experience \" Reactions to internal software are now flavored by the Web.
  • 6. Think less about features and more about how people work effectively \" MOLAP vs. ROLAP is history; social networking and collaboration are the future.
BI is not a failure and it's not dead, either. BI 1.0 provided a great deal of utility, but the next wave will be hoisted up, as Issac Newton described his superhuman accomplishments, like \"standing on the shoulders of giants.\" So climb on. The view is great. Neil RadenNeil Raden is the founder of Hired Brains, providers of consulting, research and analysis in Business Intelligence, Performance Management, real-time analytics and information/semantic integration. Write him at nraden@hiredbrains.com.
このウェブサイトの聲明
この記事の內(nèi)容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當する法的責任を負いません。盜作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡(luò)ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

コマンドラインクライアントを使用してMySQLデータベースに接続します コマンドラインクライアントを使用してMySQLデータベースに接続します Jul 07, 2025 am 01:50 AM

MySQLデータベースに接続する最も直接的な方法は、コマンドラインクライアントを使用することです。最初にMySQL -Uユーザー名-Pを入力し、パスワードを正しく入力して、インタラクティブインターフェイスを入力します。リモートデータベースに接続する場合は、-Hパラメーターを追加してホストアドレスを指定する必要があります。次に、MySQL-U USERNAME-Pデータベース名やMySQL-U USERNAME-Pデータベース名など、ログイン時に特定のデータベースに直接切り替えるか、ログインするときにSQLファイルを?qū)g行できます。

MySQLの文字セットと照合の問題を処理します MySQLの文字セットと照合の問題を処理します Jul 08, 2025 am 02:51 AM

クロスプラットフォームの移行またはマルチパーソン開発の場合、文字セットとソートルールの問題は一般的になり、その結(jié)果、文字化けされたコードまたは一貫性のないクエリが発生します。 3つのコアソリューションがあります。最初に、データベース、テーブル、およびフィールドの文字セットをUTF8MB4にチェックして統(tǒng)合し、showCreateDatabase/テーブルを介して表示し、ALTERステートメントで変更します。次に、クライアントが接続するときにUTF8MB4文字セットを指定し、接続パラメーターに設(shè)定するか、SetNamesを?qū)g行します。第三に、ソートルールを合理的に選択し、UTF8MB4_UNICODE_CIを使用して比較と並べ替えの正確性を確保し、ライブラリとテーブルを構(gòu)築するときに変更を介して指定または変更することをお勧めします。

MySQLのトランザクションの実裝と酸性特性の理解 MySQLのトランザクションの実裝と酸性特性の理解 Jul 08, 2025 am 02:50 AM

MySQLはトランザクション処理をサポートし、INNODBストレージエンジンを使用してデータの一貫性と整合性を確保します。 1。トランザクションはSQL操作のセットであり、すべてが成功するか、すべてがロールバックに失敗します。 2。酸屬性には、原子性、一貫性、分離、持続性が含まれます。 3。トランザクションを手動で制御するステートメントは、開始換算、コミット、ロールバックです。 4. 4つの分離レベルには、読み取りがコミットされていない、読み取り、提出された再現(xiàn)可能な読み取り、およびシリアル化が含まれます。 5.トランザクションを正しく使用して、長期操作を回避し、自動コミットをオフにし、ロックと例外を合理的に処理します。これらのメカニズムを通じて、MySQLは高い信頼性と同時制御を?qū)g現(xiàn)できます。

MySQLでの文字セットと照合の管理 MySQLでの文字セットと照合の管理 Jul 07, 2025 am 01:41 AM

MySQLの文字セットと照合ルールの設(shè)定は非常に重要であり、データストレージ、クエリの効率、一貫性に影響します。まず、UTF8MB4が中國語や絵文字をサポートするなど、文字セットが保存可能な文字範囲を決定します。ソートルールは、UTF8MB4_UNICODE_CIなどの文字比較方法を制御し、UTF8MB4_BINはバイナリ比較です。第二に、文字セットは、サーバー、データベース、テーブル、列の複數(shù)のレベルで設(shè)定できます。競合を避けるために、UTF8MB4およびUTF8MB4_UNICODE_CIを統(tǒng)一された方法で使用することをお勧めします。さらに、文字化けしたコードの問題は、多くの場合、接続、ストレージ、またはプログラム端子の一貫性のない文字セットによって引き起こされ、レイヤーごとにレイヤーをチェックして均一に設(shè)定する必要があります。さらに、変換エラーを防ぐために、エクスポートおよびインポートするときに文字セットを指定する必要があります

mysql 8で一般的なテーブル式(CTE)を使用します mysql 8で一般的なテーブル式(CTE)を使用します Jul 12, 2025 am 02:23 AM

CTESは、複雑なクエリの読みやすさとメンテナンスを改善するために、MySQL8.0によって導(dǎo)入された機能です。 1。CTEは一時的な結(jié)果セットであり、現(xiàn)在のクエリでのみ有効で、明確な構(gòu)造があり、重複する?yún)⒄栅颔单荸`トしています。 2。サブQueriesと比較して、CTEはより読みやすく、再利用可能であり、再帰をサポートします。 3.再帰CTEは、初期クエリと再帰部品を含める必要がある組織構(gòu)造などの階層データを処理できます。 4.提案の使用には、虐待の避け、仕様の命名、パフォーマンス、デバッグ方法に注意を払うことが含まれます。

MySQLクエリパフォーマンスの最適化の戦略 MySQLクエリパフォーマンスの最適化の戦略 Jul 13, 2025 am 01:45 AM

MySQLクエリパフォーマンスの最適化は、インデックスの合理的な使用、SQLステートメントの最適化、テーブル構(gòu)造設(shè)計とパーティション戦略、キャッシュおよび監(jiān)視ツールの利用など、コアポイントから開始する必要があります。 1.合理的にインデックスを使用する:一般的に使用されるクエリフィールドでインデックスを作成し、完全なテーブルスキャンを避け、結(jié)合されたインデックス順序に注意を払い、低い選択フィールドにインデックスを追加しないでください。 2。SQLクエリの最適化:Select*を避け、Whereで機能を使用しないでください。サブクエリネスティングを削減し、ページングクエリメソッドを最適化します。 3。テーブル構(gòu)造の設(shè)計とパーティション化:読み取りおよび書き込みシナリオに従ってパラダイムまたはアンチパラダイムを選択し、適切なフィールドタイプを選択し、定期的にデータをクリーンし、水平テーブルを検討して、テーブルまたはパーティションを時間単位で分割します。 4.キャッシュと監(jiān)視の利用:Redisキャッシュを使用してデータベースの圧力を下げ、遅いクエリを有効にします

堅牢なMySQLデータベースバックアップ戦略の設(shè)計 堅牢なMySQLデータベースバックアップ戦略の設(shè)計 Jul 08, 2025 am 02:45 AM

信頼性の高いMySQLバックアップソリューションを設(shè)計するために、1。まず、RTOおよびRPOインジケーターを明確にし、ビジネスの許容可能なダウンタイムとデータ損失範囲に基づいてバックアップ頻度と方法を決定します。 2。論理バックアップ(MySQldumpなど)、物理バックアップ(PerconaxTrabackupなど)、バイナリログ(BINLOG)を組み合わせて、ハイブリッドバックアップ戦略を採用して、迅速な回復(fù)と最小データ損失を達成します。 3.リカバリプロセスを定期的にテストして、バックアップの有効性を確保し、回復(fù)操作に精通します。 4.オフサイトストレージ、暗號化保護、バージョン保持ポリシー、バックアップタスク監(jiān)視など、ストレージセキュリティに注意してください。

MySQLで複雑な結(jié)合操作を最適化します MySQLで複雑な結(jié)合操作を最適化します Jul 09, 2025 am 01:26 AM

tooptimizecomplexjoInoperationsql、followfourkeySteps:1)Joincolumnsの順にプロペラインデックスすること、特にcomposidedexexexexexexexexedexexedexedidedexediding oclumnjoinsandavoindavoindavoindavoindavoindavoindavoindavoindavoindavoindavoindavoindavoindavoindidingは、削減された

See all articles