国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

ホームページ バックエンド開発 Python チュートリアル OpenCvを使用して簡単な點描絵畫を作成します。

OpenCvを使用して簡単な點描絵畫を作成します。

Nov 28, 2024 am 12:51 AM

はじめに
オープンソース コンピューター ビジョン ライブラリ (OpenCV) は、畫像やビデオ ファイルなどの視覚入力を処理するための、無料で利用できるプログラミング ツールを提供します。これには、さまざまなプログラミング言語を介してアクセスできる、すぐに使用できる関數(shù)が多數(shù)含まれています。ここに投稿した例では Python を使用しています。したがって、コードを理解したい場合は、少なくとも Python と NumPy の基本的な知識が必要です。 OpenCV の入門を探している場合は、このリンクが非常に役立つ可能性があります: [https://dev.to/arpitmandliya/opencv-python-tutorial-3dac]。

ピクセルが畫像を作る仕組み
ほとんどの場合、コンピューター畫像は RGB (OpenCV では BGR) モデルに基づいています。これは、ピクセルの色が Red、Green、および Blue のコンポーネントの混合であることを意味します。他のモデル (例: Hue、Saturation、Value) やベクター グラフィックス (SVG または PDF) もありますが、説明は省略します。ここにあります。

コンピューター上の畫像は、色情報を含むピクセルの集合として表現(xiàn)できます。より専門的な用語で言えば、畫像は 3 次元配列 (または 3 つのカラー チャネルを持つピクセルのマトリックス) であり、最初の 2 次元が畫像のサイズ (高さと幅) を決定し、3 番目の次元には赤、緑の値が含まれます。および青 (各色は 0 ~ 255 の値)。畫像にカラー チャネルが 1 つだけある場合 (8 ビット畫像)、それは 0 (黒) から 255 (白) の範(fàn)囲のさまざまなグレー値を持つグレースケール畫像になります。 図 1 はそれを示しています。

Making a simple pointillism painting using OpenCv.
図 1: 畫像は配列として表されます。右側(cè)はカラー イメージの例です。赤、緑、青の値の範(fàn)囲は 0 ~ 255 (0、0、255 は青) です。左側(cè)は、さまざまなグレーの色合いを表す 1 つのチャネルを持つグレースケール イメージです。

色情報をさまざまなサイズのドットに変換する
上で説明した原則は、NumPy ライブラリと OpenCV ライブラリを使用して Python で畫像編集を?qū)g行するために適用できます。この例では、ループを使用して、NumPy 配列として表される畫像を処理します。このループは畫像內(nèi)のすべてのピクセルを反復(fù)するのではなく、一定の間隔でピクセルをスキップします (たとえば、10 番目のピクセルごとに処理します)。処理された各ピクセルのグレースケール値は、ドットのサイズを決定するために使用されます (たとえば、グレースケール値 100 は特定のドット サイズに対応します)。これらのドットは、元の畫像の色情報を使用して、元の畫像の空のコピー上に描畫されます。要約すると、元のピクセルの色情報に基づいてさまざまなサイズのドットが描畫されるイメージ コピーを作成します (図 2 を參照)。

Making a simple pointillism painting using OpenCv.
図 2: ドットを描畫するには、元の畫像のピクセルの色情報が使用されます。ドットのサイズを決定するには、元の畫像のグレースケール バージョンが使用されます。

以下にコードがあり、考えられる結(jié)果を 図 3 に示します。

import numpy as np
import cv2

# load an image; image has to be in working directory when giving no path information 
img = cv2.imread('FlowerPower.jpg',cv2.IMREAD_UNCHANGED)
# show the dimensions of the image array
print(img.shape)

# choose a resizing factor for the whole image; to depict it on computer screen
resizing = .2
#convert original image to greyscale image
img_grey = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# make a copy of the orignal image 
img_output = img.copy()

# make a white canvas by assigning the color white (255,255, 255) to each pixel
# [:,:] covers all values of the first and second array dimension
img_output[:,:] = [255,255,255] # or with black [0,0,0] or any other color

# Settings for looping over the image
step_width = 40 # steps of loop; here: every 30th pixel
# - 1 fills circle that is drawn onto output image; positive value define
# line thickness of circle
thickness = -1 
perc = .2 # size factor for drawing circles/dots onto output image

# for loops running over the first two dimensions of the array (width and height) 
# step_width defines which pixels are included
for i in range(2,  img.shape[0] - step_width,  step_width):
    for u in range(2,  img.shape[1] - step_width,  step_width):        
        # radius (dot size) is based on the value of greyscale version of original image
        # at the current index; e.g., pixel at i = 10, u = 30 might have 123
        # perc variable modifies dot size 
        radius = int((255-img_grey[i,u])*perc) +1 
        if radius <= 0:
            radius +=1
        # take color from pixel at position [i,u] of original image
        # e.g., i = 10, u = 30 might have [123,0,61] 
        color = img[i,u].astype(int).tolist()
        # draw a circle on output image using dot size based on greyscale 
        # value with color of original image   
        cv2.circle(img_output, (u,i), radius, color, thickness)

# resize images, so they are not too big for computerscreen
# based on the resizing variable defined at the top of the page        
img_size = img.shape        
img_sm =  cv2.resize(img,(int(img_size[1]*resizing), int(img_size[0]
                         * resizing)), interpolation = cv2.INTER_CUBIC)
# open window that shows original image
cv2.imshow("Original", img_sm)
img_output_sm =  cv2.resize(img_output,(int(img_size[1]*resizing), int(img_size[0]*
                              resizing)), interpolation = cv2.INTER_CUBIC)
# show the dotted image
cv2.imshow("Dotted Image", img_output_sm)

Making a simple pointillism painting using OpenCv.
図 3: 右側(cè)には元のイメージが表示され、左側(cè)にはここで示されているコードに基づく點線バージョンが表示されます。

私が包括的な方法でコードを提示し、誰かがそれを役に立つと思ってくれれば幸いです。よかったら遊んでみてください。円を長方形に置き換え、異なるサイズの円を選択し、ループのステップ幅などの値を変更して、何が起こるかを確認(rèn)してください。

以上がOpenCvを使用して簡単な點描絵畫を作成します。の詳細(xì)內(nèi)容です。詳細(xì)については、PHP 中國語 Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內(nèi)容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當(dāng)する法的責(zé)任を負(fù)いません。盜作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡(luò)ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強(qiáng)力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Pythonの不適格またはPytestフレームワークは、自動テストをどのように促進(jìn)しますか? Pythonの不適格またはPytestフレームワークは、自動テストをどのように促進(jìn)しますか? Jun 19, 2025 am 01:10 AM

Pythonの不適格でPytestは、自動テストの書き込み、整理、および実行を簡素化する2つの広く使用されているテストフレームワークです。 1.両方とも、テストケースの自動発見をサポートし、明確なテスト構(gòu)造を提供します。 pytestはより簡潔で、テスト\ _から始まる関數(shù)が必要です。 2。それらはすべて組み込みのアサーションサポートを持っています:Unittestはアサートエクイアル、アサートトルー、およびその他の方法を提供しますが、Pytestは拡張されたアサートステートメントを使用して障害の詳細(xì)を自動的に表示します。 3.すべてがテストの準(zhǔn)備とクリーニングを処理するためのメカニズムを持っています:un

Pythonは、NumpyやPandasなどのライブラリとのデータ分析と操作にどのように使用できますか? Pythonは、NumpyやPandasなどのライブラリとのデータ分析と操作にどのように使用できますか? Jun 19, 2025 am 01:04 AM

pythonisidealfordataanalysisduetonumpyandpandas.1)numpyexcelsatnumericalcompitations withfast、多次元路面およびベクトル化された分離likenp.sqrt()

動的なプログラミング技術(shù)とは何ですか?また、Pythonでそれらを使用するにはどうすればよいですか? 動的なプログラミング技術(shù)とは何ですか?また、Pythonでそれらを使用するにはどうすればよいですか? Jun 20, 2025 am 12:57 AM

動的プログラミング(DP)は、複雑な問題をより単純なサブ問題に分解し、結(jié)果を保存して繰り返し計算を回避することにより、ソリューションプロセスを最適化します。主な方法は2つあります。1。トップダウン(暗記):問題を再帰的に分解し、キャッシュを使用して中間結(jié)果を保存します。 2。ボトムアップ(表):基本的な狀況からソリューションを繰り返し構(gòu)築します。フィボナッチシーケンス、バックパッキングの問題など、最大/最小値、最適なソリューション、または重複するサブ問題が必要なシナリオに適しています。Pythonでは、デコレータまたはアレイを通じて実裝でき、再帰的な関係を特定し、ベンチマークの狀況を定義し、空間の複雑さを最適化することに注意する必要があります。

__iter__と__next__を使用してPythonにカスタムイテレーターを?qū)g裝するにはどうすればよいですか? __iter__と__next__を使用してPythonにカスタムイテレーターを?qū)g裝するにはどうすればよいですか? Jun 19, 2025 am 01:12 AM

カスタムイテレーターを?qū)g裝するには、クラス內(nèi)の__iter__および__next__メソッドを定義する必要があります。 __iter__メソッドは、ループなどの反復(fù)環(huán)境と互換性があるように、通常は自己の反復(fù)オブジェクト自體を返します。 __next__メソッドは、各反復(fù)の値を制御し、シーケンスの次の要素を返し、アイテムがもうない場合、停止例外をスローする必要があります。 statusステータスを正しく追跡する必要があり、無限のループを避けるために終了條件を設(shè)定する必要があります。 fileファイルラインフィルタリングなどの複雑なロジック、およびリソースクリーニングとメモリ管理に注意を払ってください。 simple単純なロジックについては、代わりにジェネレーター関數(shù)の収率を使用することを検討できますが、特定のシナリオに基づいて適切な方法を選択する必要があります。

Pythonプログラミング言語とそのエコシステムの新たな傾向または將來の方向性は何ですか? Pythonプログラミング言語とそのエコシステムの新たな傾向または將來の方向性は何ですか? Jun 19, 2025 am 01:09 AM

Pythonの將來の傾向には、パフォーマンスの最適化、より強(qiáng)力なタイププロンプト、代替ランタイムの増加、およびAI/MLフィールドの継続的な成長が含まれます。第一に、CPYTHONは最適化を続け、スタートアップのより速い時間、機(jī)能通話の最適化、および提案された整數(shù)操作を通じてパフォーマンスを向上させ続けています。第二に、タイプのプロンプトは、コードセキュリティと開発エクスペリエンスを強(qiáng)化するために、言語とツールチェーンに深く統(tǒng)合されています。第三に、PyscriptやNuitkaなどの代替のランタイムは、新しい機(jī)能とパフォーマンスの利點を提供します。最後に、AIとデータサイエンスの分野は拡大し続けており、新興図書館はより効率的な開発と統(tǒng)合を促進(jìn)します。これらの傾向は、Pythonが常に技術(shù)の変化に適応し、その主要な位置を維持していることを示しています。

ソケットを使用してPythonでネットワークプログラミングを?qū)g行するにはどうすればよいですか? ソケットを使用してPythonでネットワークプログラミングを?qū)g行するにはどうすればよいですか? Jun 20, 2025 am 12:56 AM

Pythonのソケットモジュールは、クライアントおよびサーバーアプリケーションの構(gòu)築に適した低レベルのネットワーク通信機(jī)能を提供するネットワークプログラミングの基礎(chǔ)です。基本的なTCPサーバーを設(shè)定するには、Socket.Socket()を使用してオブジェクトを作成し、アドレスとポートをバインドし、.listen()を呼び出して接続をリッスンし、.accept()を介してクライアント接続を受け入れる必要があります。 TCPクライアントを構(gòu)築するには、ソケットオブジェクトを作成し、.connect()を呼び出してサーバーに接続する必要があります。次に、.sendall()を使用してデータと.recv()を送信して応答を受信します。複數(shù)のクライアントを処理するには、1つを使用できます。スレッド:接続するたびに新しいスレッドを起動します。 2。非同期I/O:たとえば、Asyncioライブラリは非ブロッキング通信を?qū)g現(xiàn)できます。注意すべきこと

Pythonクラスの多型 Pythonクラスの多型 Jul 05, 2025 am 02:58 AM

Pythonオブジェクト指向プログラミングのコアコンセプトであるPythonは、「1つのインターフェイス、複數(shù)の実裝」を指し、異なるタイプのオブジェクトの統(tǒng)一処理を可能にします。 1。多型は、メソッドの書き換えを通じて実裝されます。サブクラスは、親クラスの方法を再定義できます。たとえば、Animal ClassのSOCK()方法は、犬と貓のサブクラスに異なる実裝を持っています。 2.多型の実用的な用途には、グラフィカルドローイングプログラムでdraw()メソッドを均一に呼び出すなど、コード構(gòu)造を簡素化し、スケーラビリティを向上させる、ゲーム開発における異なる文字の共通の動作の処理などが含まれます。 3. Pythonの実裝多型を満たす必要があります:親クラスはメソッドを定義し、子クラスはメソッドを上書きしますが、同じ親クラスの継承は必要ありません。オブジェクトが同じ方法を?qū)g裝する限り、これは「アヒル型」と呼ばれます。 4.注意すべきことには、メンテナンスが含まれます

Pythonでリストをスライスするにはどうすればよいですか? Pythonでリストをスライスするにはどうすればよいですか? Jun 20, 2025 am 12:51 AM

Pythonリストスライスに対するコアの答えは、[start:end:step]構(gòu)文をマスターし、その動作を理解することです。 1.リストスライスの基本形式はリスト[start:end:step]です。ここで、開始は開始インデックス(含まれています)、endはend index(含まれていません)、ステップはステップサイズです。 2。デフォルトで開始を省略して、0から開始を開始し、デフォルトで終了して終了し、デフォルトでステップを1に省略します。 3。my_list[:n]を使用して最初のnアイテムを取得し、my_list [-n:]を使用して最後のnアイテムを取得します。 4.ステップを使用して、my_list [:: 2]などの要素をスキップして、均一な數(shù)字と負(fù)のステップ値を取得できます。 5.一般的な誤解には、終了インデックスが含まれません

See all articles