国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

ホームページ バックエンド開発 Python チュートリアル Pandas で CSV ファイルを読み取るときに発生する UnicodeDecodeError を解決するにはどうすればよいですか?

Pandas で CSV ファイルを読み取るときに発生する UnicodeDecodeError を解決するにはどうすればよいですか?

Dec 26, 2024 am 09:16 AM

How Can I Resolve UnicodeDecodeError When Reading CSV Files in Pandas?

UnicodeDecodeError: Pandas で CSV ファイルを読み取る際のエンコーディングの問題を解決する

概要

CSV ファイルでは、特にデフォルトでサポートされていない文字が見つかった場(chǎng)合に、エンコードの問題が発生することがよくあります。エンコーディング。 Python の人気のあるデータ操作ライブラリである Pandas は、CSV ファイルからデータをインポートするための read_csv() メソッドを提供します。ただし、このメソッドでは、Unicode でエンコードされた文字を処理するときに UnicodeDecodeError が発生することがあります。

エラー分析

提供されたエラー メッセージは、read_csv() メソッドが困難であることを示しています。デフォルトの UTF-8 エンコーディングを使用してファイル內(nèi)のバイトをデコードします。無(wú)効な継続バイトは、ファイルが別のエンコードを使用してエンコードされた可能性があることを示唆しています。

問題の解決

このエラーを解決するには、次のときにエンコードを明示的に指定できます。 CSVファイルを読み込んでいます。 Pandas は、この目的のためにエンコーディング パラメーターを提供します。次のアプローチを使用できます。

  • ISO-8859-1 エンコーディング:
    西洋言語(yǔ)で一般的に使用される ISO-8859-1 エンコーディングを使用します。ヨーロッパの性格セット:

    data = pd.read_csv(filepath, encoding="ISO-8859-1")
  • UTF-8 エンコーディング:
    または、世界中の文字セットに適した UTF-8 エンコーディングを使用してみてください:

    data = pd.read_csv(filepath, encoding="utf-8")

のその他のエイリアス「latin」や「cp1252」などの ISO-8859-1 も使用できます。サポートされているエンコーディングの包括的なリストについては、Pandas ドキュメントまたは Python ドキュメントを參照してください。

ファイル エンコーディングの検出

CSV ファイルのエンコーディングが不明な場(chǎng)合は、 enca、Linux の file -i、macOS の file -I などのツールを使用して、正しいものを判斷できます。エンコード。

追加リソース

  • [Pandas read_csv() ドキュメント](https://pandas.pydata.org/pandas-docs/stable/reference) /api/pandas.read_csv.html)
  • [Python csv モジュール]例](https://docs.python.org/3/library/csv.html#examples)
  • [Unicode と文字セットについてすべての開発者が知っておくべきこと](https://unicode.org/ reports/tr15/)

以上がPandas で CSV ファイルを読み取るときに発生する UnicodeDecodeError を解決するにはどうすればよいですか?の詳細(xì)內(nèi)容です。詳細(xì)については、PHP 中國(guó)語(yǔ) Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內(nèi)容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當(dāng)する法的責(zé)任を負(fù)いません。盜作または侵害の疑いのあるコンテンツを見つけた場(chǎng)合は、admin@php.cn までご連絡(luò)ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無(wú)料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無(wú)料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡(jiǎn)単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無(wú)料のコードエディター

SublimeText3 中國(guó)語(yǔ)版

SublimeText3 中國(guó)語(yǔ)版

中國(guó)語(yǔ)版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強(qiáng)力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Pythonの不適格またはPytestフレームワークは、自動(dòng)テストをどのように促進(jìn)しますか? Pythonの不適格またはPytestフレームワークは、自動(dòng)テストをどのように促進(jìn)しますか? Jun 19, 2025 am 01:10 AM

Pythonの不適格でPytestは、自動(dòng)テストの書き込み、整理、および実行を簡(jiǎn)素化する2つの広く使用されているテストフレームワークです。 1.両方とも、テストケースの自動(dòng)発見をサポートし、明確なテスト構(gòu)造を提供します。 pytestはより簡(jiǎn)潔で、テスト\ _から始まる関數(shù)が必要です。 2。それらはすべて組み込みのアサーションサポートを持っています:Unittestはアサートエクイアル、アサートトルー、およびその他の方法を提供しますが、Pytestは拡張されたアサートステートメントを使用して障害の詳細(xì)を自動(dòng)的に表示します。 3.すべてがテストの準(zhǔn)備とクリーニングを処理するためのメカニズムを持っています:un

Pythonは、NumpyやPandasなどのライブラリとのデータ分析と操作にどのように使用できますか? Pythonは、NumpyやPandasなどのライブラリとのデータ分析と操作にどのように使用できますか? Jun 19, 2025 am 01:04 AM

pythonisidealfordataanalysisduetonumpyandpandas.1)numpyexcelsatnumericalcompitations withfast、多次元路面およびベクトル化された分離likenp.sqrt()

動(dòng)的なプログラミング技術(shù)とは何ですか?また、Pythonでそれらを使用するにはどうすればよいですか? 動(dòng)的なプログラミング技術(shù)とは何ですか?また、Pythonでそれらを使用するにはどうすればよいですか? Jun 20, 2025 am 12:57 AM

動(dòng)的プログラミング(DP)は、複雑な問題をより単純なサブ問題に分解し、結(jié)果を保存して繰り返し計(jì)算を回避することにより、ソリューションプロセスを最適化します。主な方法は2つあります。1。トップダウン(暗記):?jiǎn)栴}を再帰的に分解し、キャッシュを使用して中間結(jié)果を保存します。 2。ボトムアップ(表):基本的な狀況からソリューションを繰り返し構(gòu)築します。フィボナッチシーケンス、バックパッキングの問題など、最大/最小値、最適なソリューション、または重複するサブ問題が必要なシナリオに適しています。Pythonでは、デコレータまたはアレイを通じて実裝でき、再帰的な関係を特定し、ベンチマークの狀況を定義し、空間の複雑さを最適化することに注意する必要があります。

__iter__と__next__を使用してPythonにカスタムイテレーターを?qū)g裝するにはどうすればよいですか? __iter__と__next__を使用してPythonにカスタムイテレーターを?qū)g裝するにはどうすればよいですか? Jun 19, 2025 am 01:12 AM

カスタムイテレーターを?qū)g裝するには、クラス內(nèi)の__iter__および__next__メソッドを定義する必要があります。 __iter__メソッドは、ループなどの反復(fù)環(huán)境と互換性があるように、通常は自己の反復(fù)オブジェクト自體を返します。 __next__メソッドは、各反復(fù)の値を制御し、シーケンスの次の要素を返し、アイテムがもうない場(chǎng)合、停止例外をスローする必要があります。 statusステータスを正しく追跡する必要があり、無(wú)限のループを避けるために終了條件を設(shè)定する必要があります。 fileファイルラインフィルタリングなどの複雑なロジック、およびリソースクリーニングとメモリ管理に注意を払ってください。 simple単純なロジックについては、代わりにジェネレーター関數(shù)の収率を使用することを検討できますが、特定のシナリオに基づいて適切な方法を選択する必要があります。

Pythonプログラミング言語(yǔ)とそのエコシステムの新たな傾向または將來の方向性は何ですか? Pythonプログラミング言語(yǔ)とそのエコシステムの新たな傾向または將來の方向性は何ですか? Jun 19, 2025 am 01:09 AM

Pythonの將來の傾向には、パフォーマンスの最適化、より強(qiáng)力なタイププロンプト、代替ランタイムの増加、およびAI/MLフィールドの継続的な成長(zhǎng)が含まれます。第一に、CPYTHONは最適化を続け、スタートアップのより速い時(shí)間、機(jī)能通話の最適化、および提案された整數(shù)操作を通じてパフォーマンスを向上させ続けています。第二に、タイプのプロンプトは、コードセキュリティと開発エクスペリエンスを強(qiáng)化するために、言語(yǔ)とツールチェーンに深く統(tǒng)合されています。第三に、PyscriptやNuitkaなどの代替のランタイムは、新しい機(jī)能とパフォーマンスの利點(diǎn)を提供します。最後に、AIとデータサイエンスの分野は拡大し続けており、新興図書館はより効率的な開発と統(tǒng)合を促進(jìn)します。これらの傾向は、Pythonが常に技術(shù)の変化に適応し、その主要な位置を維持していることを示しています。

ソケットを使用してPythonでネットワークプログラミングを?qū)g行するにはどうすればよいですか? ソケットを使用してPythonでネットワークプログラミングを?qū)g行するにはどうすればよいですか? Jun 20, 2025 am 12:56 AM

Pythonのソケットモジュールは、クライアントおよびサーバーアプリケーションの構(gòu)築に適した低レベルのネットワーク通信機(jī)能を提供するネットワークプログラミングの基礎(chǔ)です。基本的なTCPサーバーを設(shè)定するには、Socket.Socket()を使用してオブジェクトを作成し、アドレスとポートをバインドし、.listen()を呼び出して接続をリッスンし、.accept()を介してクライアント接続を受け入れる必要があります。 TCPクライアントを構(gòu)築するには、ソケットオブジェクトを作成し、.connect()を呼び出してサーバーに接続する必要があります。次に、.sendall()を使用してデータと.recv()を送信して応答を受信します。複數(shù)のクライアントを処理するには、1つを使用できます。スレッド:接続するたびに新しいスレッドを起動(dòng)します。 2。非同期I/O:たとえば、Asyncioライブラリは非ブロッキング通信を?qū)g現(xiàn)できます。注意すべきこと

Pythonでリストをスライスするにはどうすればよいですか? Pythonでリストをスライスするにはどうすればよいですか? Jun 20, 2025 am 12:51 AM

Pythonリストスライスに対するコアの答えは、[start:end:step]構(gòu)文をマスターし、その動(dòng)作を理解することです。 1.リストスライスの基本形式はリスト[start:end:step]です。ここで、開始は開始インデックス(含まれています)、endはend index(含まれていません)、ステップはステップサイズです。 2。デフォルトで開始を省略して、0から開始を開始し、デフォルトで終了して終了し、デフォルトでステップを1に省略します。 3。my_list[:n]を使用して最初のnアイテムを取得し、my_list [-n:]を使用して最後のnアイテムを取得します。 4.ステップを使用して、my_list [:: 2]などの要素をスキップして、均一な數(shù)字と負(fù)のステップ値を取得できます。 5.一般的な誤解には、終了インデックスが含まれません

Pythonで日付と時(shí)間を操作するためにDateTimeモジュールを使用するにはどうすればよいですか? Pythonで日付と時(shí)間を操作するためにDateTimeモジュールを使用するにはどうすればよいですか? Jun 20, 2025 am 12:58 AM

PythonのDateTimeモジュールは、基本的な日付と時(shí)刻の処理要件を満たすことができます。 1. DateTime.now()を通じて現(xiàn)在の日付と時(shí)刻を取得するか、それぞれ.date()と.time()を抽出できます。 2。DateTimeなどの特定の日付と時(shí)刻のオブジェクトを手動(dòng)で作成できます(年= 2025、月= 12、日= 25、時(shí)間= 18、分= 30)。 3. .strftime()を使用して、形式で文字列を出力します。一般的なコードには、%y、%m、%d、%h、%m、および%sが含まれます。 Strptime()を使用して、文字列をDateTimeオブジェクトに解析します。 4.日付の出荷にTimedeltaを使用します

See all articles