国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

ホームページ バックエンド開発 Python チュートリアル Python でのプロセス管理: 並列プログラミングの基礎

Python でのプロセス管理: 並列プログラミングの基礎

Jan 03, 2025 am 09:52 AM

Process Management in Python: Fundamentals of Parallel Programming

並列プログラミングは、プログラムが複數(shù)のプロセッサまたはコアで複數(shù)のタスクを同時に実行できるようにするプログラミング モデルです。このモデルは、プロセッサ リソースをより効率的に使用し、処理時間を短縮し、パフォーマンスを向上させることを目的としています。

並列プログラミングを畫像で説明すると、問題があると想像できます。並列処理を開始する前に、この問題を小さな部分に分割します。これらのサブパートは互いに獨立しており、お互いについて何も知らないと仮定します。各サブ問題は、より小さなタスクまたは指示に変換されます。これらのタスクは、並行作業(yè)に適した方法で編成されています。たとえば、データセットに対して同じ操作を実行するために多くの命令を作成できます。これらのタスクはさまざまなプロセッサに分散されます。各プロセッサは、割り當てられた命令を獨立して並行して処理します。このプロセスにより、総処理時間が大幅に短縮され、リソースをより効率的に使用できるようになります。

Python では、並列プログラミング用のツールとモジュールがいくつか提供されています。

**マルチプロセッシング
**これにより、プログラムは複數(shù)のプロセスを同時に実行できるようになり、真の並列処理を活用できるようになります。マルチプロセッシング モジュールは GIL (グローバル インタープリター ロック) の制限を克服し、マルチコア プロセッサーで最大限のパフォーマンスを実現(xiàn)できます。

グローバル インタプリタ ロック (GIL) は、CPython と呼ばれる Python の一般的な実裝で使用されるメカニズムです。 GIL では、一度に 1 つのスレッドのみが Python バイトコードを実行できます。これは、Python でマルチスレッドが使用される場合に真の並列処理を制限する構造です。

*正方形と立方體の計算例
*

from multiprocessing import Process

def print_square(numbers):
    for n in numbers:
        print(f"Square of {n} is {n * n}")

def print_cube(numbers):
    for n in numbers:
        print(f"Cube of {n} is {n * n * n}")

if __name__ == "__main__":
    numbers = [2, 3, 4, 5]  

    # ??lemler (processes) olu?turma
    process1 = Process(target=print_square, args=(numbers,))
    process2 = Process(target=print_cube, args=(numbers,))

    # ??lemleri ba?latma
    process1.start()
    process2.start()

    # ??lemlerin tamamlanmas?n? bekleme
    process1.join()
    process2.join()

マルチプロセッシングが必要な理由 マルチプロセッシングの必要性は、料理人やキッチンに例えて説明できます。料理人がキッチンで一人で調理することを単一プロセス プログラムと考えることができます。複數(shù)の料理人が同じキッチンで一緒に作業(yè)することを、マルチプロセッシングに例えることができます。

単一プロセス - 単一調理

キッチンには調理人が 1 人だけです。この料理人は前菜、メインコース、デザートの 3 つの異なる料理を作ります。各料理は順番に作られます:
彼はスターターを準備して完成させます。
彼はメインコースに進み、それを終了します。
最後にデザートを作ります。
問題:

料理人がどんなに早くても、交代で調理するため、キッチンでの時間が無駄になります。
3 つの異なる料理を同時に調理する必要がある場合は、時間が長くなります。
マルチプロセッシング - 多くのクック

次に、同じキッチンに 3 人の料理人がいると想像してください。それぞれが異なる料理を準備しています:
一人の料理人がスターターを作ります。
2 番目の料理人がメインコースを準備します。
3人目の料理人がデザートを作ります。
利點:

3 つの料理が同時に作られるため、合計時間が大幅に短縮されます。
各クックは獨立して獨自の作業(yè)を実行し、他のクックの影響を受けません。
Python でプロセス間でデータを共有する
Python では、multiprocessing モジュールを使用して、異なるプロセス間でデータを共有することができます。ただし、各プロセスは獨自のメモリ空間を使用します。したがって、プロセス間でデータを共有するために特別なメカニズムが使用されます。

from multiprocessing import Process

def print_square(numbers):
    for n in numbers:
        print(f"Square of {n} is {n * n}")

def print_cube(numbers):
    for n in numbers:
        print(f"Cube of {n} is {n * n * n}")

if __name__ == "__main__":
    numbers = [2, 3, 4, 5]  

    # ??lemler (processes) olu?turma
    process1 = Process(target=print_square, args=(numbers,))
    process2 = Process(target=print_cube, args=(numbers,))

    # ??lemleri ba?latma
    process1.start()
    process2.start()

    # ??lemlerin tamamlanmas?n? bekleme
    process1.join()
    process2.join()

コードサンプルを調べると、結果リストが空であることがわかります。この主な理由は、マルチプロセッシングで作成されたプロセスがメイン プロセスから獨立した獨自のメモリ空間で動作するためです。この獨立性のため、子プロセスで行われた変更は、メイン プロセスの変數(shù)に直接反映されません。

Python には、データを共有するための次のメソッドが用意されています。

**1.共有メモリ
**Value オブジェクトと Array オブジェクトは、操作間でデータを共有するために使用されます。
値: 単一のデータ型 (數(shù)値など) を共有します。
配列: データの配列を共有するために使用されます。

import multiprocessing

result = []

def square_of_list(mylist):
    for num in mylist:
        result.append(num**2)
    return result

mylist= [1,3,4,5]

p1 = multiprocessing.Process(target=square_of_list,args=(mylist,))
p1.start()
p1.join()

print(result) # [] Bo? Liste

**2.キュー
**FIFO (先入れ先出し) 構造を使用してプロセス間でデータを転送します。
multiprocessing.Queue を使用すると、複數(shù)のプロセスがデータを送受信できるようになります。

from multiprocessing import Process, Value

def increment(shared_value):
    for _ in range(1000):
        shared_value.value += 1  

if __name__ == "__main__":
    shared_value = Value('i', 0)  
    processes = [Process(target=increment, args=(shared_value,)) for _ in range(5)]

    for p in processes:
        p.start()
    for p in processes:
        p.join()

    print(f"Sonu?: {shared_value.value}")

**3.パイプ
**multiprocessing.Pipe は、2 つのプロセス間の雙方向のデータ転送を提供します。
データの送信と受信の両方に使用できます。

from multiprocessing import Process, Queue

def producer(queue):
    for i in range(5):
        queue.put(i)  # Kuyru?a veri ekle
        print(f"üretildi: {i}")

def consumer(queue):
    while not queue.empty():
        item = queue.get()  
        print(f"Tüketildi: {item}")

if __name__ == "__main__":
    queue = Queue()

    producer_process = Process(target=producer, args=(queue,))
    consumer_process = Process(target=consumer, args=(queue,))

    producer_process.start()
    producer_process.join()

    consumer_process.start()
    consumer_process.join()

*プロセス間のパディング
*
「プロセス間のパディング」は、プロセス メモリの編成や、複數(shù)のプロセス間で共有されるデータにアクセスする際のデータの配置や衝突の問題を回避するためによく使用されます。

この概念は、キャッシュラインのフォールス シェアリングなどの場合に特に重要です。複數(shù)のプロセスが同時に共有メモリを使用しようとすると、誤った共有によりパフォーマンスの低下が発生する可能性があります。これは、最新のプロセッサでのキャッシュラインの共有が原因です。

**プロセス間の同期
**Python のマルチプロセッシング モジュールを使用すると、複數(shù)のプロセスを同時に実行できます。ただし、複數(shù)のプロセスが同じデータにアクセスする必要がある場合は、同期を使用することが重要です。これは、データの一貫性を確保し、競合狀態(tài)などの問題を回避するために必要です。

from multiprocessing import Process, Pipe

def send_data(conn):
    conn.send([1, 2, 3, 4])  
    conn.close()

if __name__ == "__main__":
    parent_conn, child_conn = Pipe()  

    process = Process(target=send_data, args=(child_conn,))
    process.start()

    print(f"Al?nan veri: {parent_conn.recv()}")  # Veri al
    process.join()

ロックにより、一度に 1 つのプロセスのみが共有データにアクセスできます。
ロックを使用しているプロセスが完了する前に、他のプロセスが待機します。

**マルチスレッド

マルチスレッドは、プログラムで複數(shù)のスレッドを同時に実行できるようにする並列プログラミング モデルです。スレッドは、同じプロセス內で実行される小さな獨立したコード単位であり、リソースを共有することでより高速かつ効率的な処理を目指します。
Python では、マルチスレッド アプリケーションの開発にスレッド モジュールが使用されます。ただし、Python の Global Interpreter Lock (GIL) メカニズムにより、マルチスレッドでは CPU に依存するタスクのパフォーマンスが制限されます。したがって、一般に、I/O バウンドのタスクではマルチスレッドが推奨されます。

スレッドはプログラム內の一連の命令です。

from multiprocessing import Process

def print_square(numbers):
    for n in numbers:
        print(f"Square of {n} is {n * n}")

def print_cube(numbers):
    for n in numbers:
        print(f"Cube of {n} is {n * n * n}")

if __name__ == "__main__":
    numbers = [2, 3, 4, 5]  

    # ??lemler (processes) olu?turma
    process1 = Process(target=print_square, args=(numbers,))
    process2 = Process(target=print_cube, args=(numbers,))

    # ??lemleri ba?latma
    process1.start()
    process2.start()

    # ??lemlerin tamamlanmas?n? bekleme
    process1.join()
    process2.join()

**スレッド同期
**スレッド同期は、複數(shù)のスレッドが同じリソースに同時にアクセスするときに、データの一貫性と順序を確保するために使用される技術です。 Python では、スレッド モジュールは同期用のツールをいくつか提供します。

**スレッド同期が必要な理由
**競合狀況:

2 つ以上のスレッドが共有リソースに同時にアクセスすると、データの不整合が発生する可能性があります。
たとえば、あるスレッドがデータを読み取りながら、別のスレッドが同じデータを更新する場合があります。
*データの一貫性:
*

共有リソースが正しく更新されるようにするには、スレッド間の調整が必要です。
Python での同期ツールの例
**1.ロック
**スレッドはロックを取得すると、他のスレッドが同じリソースにアクセスできるようになる前に、ロックが解放されるのを待ちます。

import multiprocessing

result = []

def square_of_list(mylist):
    for num in mylist:
        result.append(num**2)
    return result

mylist= [1,3,4,5]

p1 = multiprocessing.Process(target=square_of_list,args=(mylist,))
p1.start()
p1.join()

print(result) # [] Bo? Liste

2-イベント

from multiprocessing import Process, Value

def increment(shared_value):
    for _ in range(1000):
        shared_value.value += 1  

if __name__ == "__main__":
    shared_value = Value('i', 0)  
    processes = [Process(target=increment, args=(shared_value,)) for _ in range(5)]

    for p in processes:
        p.start()
    for p in processes:
        p.join()

    print(f"Sonu?: {shared_value.value}")

**結論:
**スレッドの同期は、スレッドが共有リソースにアクセスするときにデータの不整合を防ぐために重要です。 Python では、Lock、RLock、Semaphore、Event、Condition などのツールが、同期のニーズに応じた効果的なソリューションを提供します。どのツールを使用するかは、アプリケーションのニーズと同期要件によって異なります。

以上がPython でのプロセス管理: 並列プログラミングの基礎の詳細內容です。詳細については、PHP 中國語 Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當する法的責任を負いません。盜作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Pythonの不適格またはPytestフレームワークは、自動テストをどのように促進しますか? Pythonの不適格またはPytestフレームワークは、自動テストをどのように促進しますか? Jun 19, 2025 am 01:10 AM

Pythonの不適格でPytestは、自動テストの書き込み、整理、および実行を簡素化する2つの広く使用されているテストフレームワークです。 1.両方とも、テストケースの自動発見をサポートし、明確なテスト構造を提供します。 pytestはより簡潔で、テスト\ _から始まる関數(shù)が必要です。 2。それらはすべて組み込みのアサーションサポートを持っています:Unittestはアサートエクイアル、アサートトルー、およびその他の方法を提供しますが、Pytestは拡張されたアサートステートメントを使用して障害の詳細を自動的に表示します。 3.すべてがテストの準備とクリーニングを処理するためのメカニズムを持っています:un

Pythonは、NumpyやPandasなどのライブラリとのデータ分析と操作にどのように使用できますか? Pythonは、NumpyやPandasなどのライブラリとのデータ分析と操作にどのように使用できますか? Jun 19, 2025 am 01:04 AM

pythonisidealfordataanalysisduetonumpyandpandas.1)numpyexcelsatnumericalcompitations withfast、多次元路面およびベクトル化された分離likenp.sqrt()

動的なプログラミング技術とは何ですか?また、Pythonでそれらを使用するにはどうすればよいですか? 動的なプログラミング技術とは何ですか?また、Pythonでそれらを使用するにはどうすればよいですか? Jun 20, 2025 am 12:57 AM

動的プログラミング(DP)は、複雑な問題をより単純なサブ問題に分解し、結果を保存して繰り返し計算を回避することにより、ソリューションプロセスを最適化します。主な方法は2つあります。1。トップダウン(暗記):問題を再帰的に分解し、キャッシュを使用して中間結果を保存します。 2。ボトムアップ(表):基本的な狀況からソリューションを繰り返し構築します。フィボナッチシーケンス、バックパッキングの問題など、最大/最小値、最適なソリューション、または重複するサブ問題が必要なシナリオに適しています。Pythonでは、デコレータまたはアレイを通じて実裝でき、再帰的な関係を特定し、ベンチマークの狀況を定義し、空間の複雑さを最適化することに注意する必要があります。

__iter__と__next__を使用してPythonにカスタムイテレーターを実裝するにはどうすればよいですか? __iter__と__next__を使用してPythonにカスタムイテレーターを実裝するにはどうすればよいですか? Jun 19, 2025 am 01:12 AM

カスタムイテレーターを実裝するには、クラス內の__iter__および__next__メソッドを定義する必要があります。 __iter__メソッドは、ループなどの反復環(huán)境と互換性があるように、通常は自己の反復オブジェクト自體を返します。 __next__メソッドは、各反復の値を制御し、シーケンスの次の要素を返し、アイテムがもうない場合、停止例外をスローする必要があります。 statusステータスを正しく追跡する必要があり、無限のループを避けるために終了條件を設定する必要があります。 fileファイルラインフィルタリングなどの複雑なロジック、およびリソースクリーニングとメモリ管理に注意を払ってください。 simple単純なロジックについては、代わりにジェネレーター関數(shù)の収率を使用することを検討できますが、特定のシナリオに基づいて適切な方法を選択する必要があります。

Pythonプログラミング言語とそのエコシステムの新たな傾向または將來の方向性は何ですか? Pythonプログラミング言語とそのエコシステムの新たな傾向または將來の方向性は何ですか? Jun 19, 2025 am 01:09 AM

Pythonの將來の傾向には、パフォーマンスの最適化、より強力なタイププロンプト、代替ランタイムの増加、およびAI/MLフィールドの継続的な成長が含まれます。第一に、CPYTHONは最適化を続け、スタートアップのより速い時間、機能通話の最適化、および提案された整數(shù)操作を通じてパフォーマンスを向上させ続けています。第二に、タイプのプロンプトは、コードセキュリティと開発エクスペリエンスを強化するために、言語とツールチェーンに深く統(tǒng)合されています。第三に、PyscriptやNuitkaなどの代替のランタイムは、新しい機能とパフォーマンスの利點を提供します。最後に、AIとデータサイエンスの分野は拡大し続けており、新興図書館はより効率的な開発と統(tǒng)合を促進します。これらの傾向は、Pythonが常に技術の変化に適応し、その主要な位置を維持していることを示しています。

ソケットを使用してPythonでネットワークプログラミングを実行するにはどうすればよいですか? ソケットを使用してPythonでネットワークプログラミングを実行するにはどうすればよいですか? Jun 20, 2025 am 12:56 AM

Pythonのソケットモジュールは、クライアントおよびサーバーアプリケーションの構築に適した低レベルのネットワーク通信機能を提供するネットワークプログラミングの基礎です?;镜膜蔜CPサーバーを設定するには、Socket.Socket()を使用してオブジェクトを作成し、アドレスとポートをバインドし、.listen()を呼び出して接続をリッスンし、.accept()を介してクライアント接続を受け入れる必要があります。 TCPクライアントを構築するには、ソケットオブジェクトを作成し、.connect()を呼び出してサーバーに接続する必要があります。次に、.sendall()を使用してデータと.recv()を送信して応答を受信します。複數(shù)のクライアントを処理するには、1つを使用できます。スレッド:接続するたびに新しいスレッドを起動します。 2。非同期I/O:たとえば、Asyncioライブラリは非ブロッキング通信を実現(xiàn)できます。注意すべきこと

Pythonクラスの多型 Pythonクラスの多型 Jul 05, 2025 am 02:58 AM

Pythonオブジェクト指向プログラミングのコアコンセプトであるPythonは、「1つのインターフェイス、複數(shù)の実裝」を指し、異なるタイプのオブジェクトの統(tǒng)一処理を可能にします。 1。多型は、メソッドの書き換えを通じて実裝されます。サブクラスは、親クラスの方法を再定義できます。たとえば、Animal ClassのSOCK()方法は、犬と貓のサブクラスに異なる実裝を持っています。 2.多型の実用的な用途には、グラフィカルドローイングプログラムでdraw()メソッドを均一に呼び出すなど、コード構造を簡素化し、スケーラビリティを向上させる、ゲーム開発における異なる文字の共通の動作の処理などが含まれます。 3. Pythonの実裝多型を満たす必要があります:親クラスはメソッドを定義し、子クラスはメソッドを上書きしますが、同じ親クラスの継承は必要ありません。オブジェクトが同じ方法を実裝する限り、これは「アヒル型」と呼ばれます。 4.注意すべきことには、メンテナンスが含まれます

Pythonでリストをスライスするにはどうすればよいですか? Pythonでリストをスライスするにはどうすればよいですか? Jun 20, 2025 am 12:51 AM

Pythonリストスライスに対するコアの答えは、[start:end:step]構文をマスターし、その動作を理解することです。 1.リストスライスの基本形式はリスト[start:end:step]です。ここで、開始は開始インデックス(含まれています)、endはend index(含まれていません)、ステップはステップサイズです。 2。デフォルトで開始を省略して、0から開始を開始し、デフォルトで終了して終了し、デフォルトでステップを1に省略します。 3。my_list[:n]を使用して最初のnアイテムを取得し、my_list [-n:]を使用して最後のnアイテムを取得します。 4.ステップを使用して、my_list [:: 2]などの要素をスキップして、均一な數(shù)字と負のステップ値を取得できます。 5.一般的な誤解には、終了インデックスが含まれません

See all articles