国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

ホームページ バックエンド開発 Python チュートリアル 堅牢なマイクロサービスを構(gòu)築するための強力な Python ライブラリ

堅牢なマイクロサービスを構(gòu)築するための強力な Python ライブラリ

Jan 05, 2025 am 10:07 AM

owerful Python Libraries for Building Robust Microservices

ベストセラー作家として、アマゾンで私の本を探索することをお勧めします。 Medium で私をフォローしてサポートを示すことを忘れないでください。ありがとう!あなたのサポートは世界を意味します!

Python は、そのシンプルさ、柔軟性、堅牢なエコシステムにより、マイクロサービスを構(gòu)築するための頼りになる言語となっています。この記事では、堅牢でスケーラブルなマイクロサービス アーキテクチャの作成に役立つ 5 つの強力な Python ライブラリについて説明します。

Flask は、軽量のマイクロサービスの構(gòu)築に最適な人気のあるマイクロ フレームワークです。そのシンプルさと拡張性により、小規(guī)模で焦點を絞ったサービスを迅速に作成したい開発者にとって優(yōu)れた選択肢となります。 Flask のコアは意図的にシンプルですが、必要に応じてさまざまなプラグインで拡張して機能を追加できます。

Flask マイクロサービスの基本的な例を次に示します。

from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/api/hello', methods=['GET'])
def hello():
    return jsonify({"message": "Hello, World!"})

if __name__ == '__main__':
    app.run(debug=True)

この単純なサービスは、JSON 応答を返す単一のエンドポイントを公開します。 Flask のシンプルさにより、開発者は定型コードではなくビジネス ロジックに集中できます。

より複雑なマイクロサービスの場合、FastAPI は優(yōu)れた選択肢です。これは、非同期プログラミングと自動 API ドキュメントのサポートが組み込まれており、高パフォーマンスで簡単な API 開発を?qū)g現(xiàn)できるように設(shè)計されています。

FastAPI マイクロサービスの例を次に示します:

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class Item(BaseModel):
    name: str
    price: float

@app.post("/items")
async def create_item(item: Item):
    return {"item": item.dict()}

@app.get("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}

FastAPI ではタイプ ヒントを使用することで、リクエストの自動検証と API ドキュメントの生成が可能になります。これにより、開発を大幅にスピードアップし、バグの可能性を減らすことができます。

Nameko は、Python でマイクロサービスを構(gòu)築するためのもう 1 つの強力なライブラリです。サービスを作成、テスト、実行するためのシンプルで柔軟なフレームワークを提供します。 Nameko は複數(shù)のトランスポートおよびシリアル化メソッドをサポートしているため、さまざまなユースケースに多用途に使用できます。

基本的ななめこサービスは次のとおりです:

from nameko.rpc import rpc

class GreetingService:
    name = "greeting_service"

    @rpc
    def hello(self, name):
        return f"Hello, {name}!"

Nameko の依存関係注入システムを使用すると、既存のコードを変更せずにサービスに新しい機能を簡単に追加できます。これにより疎結(jié)合が促進され、サービスの保守と拡張が容易になります。

サービス間通信を効率的に行うには、gRPC が最適です。シリアル化にプロトコル バッファーを使用するため、従來の REST API と比較してペイロードが小さくなり、通信が高速になります。

gRPC サービス定義の例を次に示します。

syntax = "proto3";

package greeting;

service Greeter {
  rpc SayHello (HelloRequest) returns (HelloReply) {}
}

message HelloRequest {
  string name = 1;
}

message HelloReply {
  string message = 1;
}

このサービスを Python で実裝する方法は次のとおりです。

import grpc
from concurrent import futures
import greeting_pb2
import greeting_pb2_grpc

class Greeter(greeting_pb2_grpc.GreeterServicer):
    def SayHello(self, request, context):
        return greeting_pb2.HelloReply(message=f"Hello, {request.name}!")

def serve():
    server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
    greeting_pb2_grpc.add_GreeterServicer_to_server(Greeter(), server)
    server.add_insecure_port('[::]:50051')
    server.start()
    server.wait_for_termination()

if __name__ == '__main__':
    serve()

gRPC の強力な型指定機能とコード生成機能は、エラーを早期に検出し、システム全體の信頼性を向上させるのに役立ちます。

マイクロサービス アーキテクチャが成長するにつれて、サービスの検出と構(gòu)成管理が重要になります。 Consul は、システムのこれらの側(cè)面の管理に役立つ強力なツールです。それ自體は Python ライブラリではありませんが、Python サービスとうまく統(tǒng)合されます。

Python を使用して Consul にサービスを登録する例を次に示します。

from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/api/hello', methods=['GET'])
def hello():
    return jsonify({"message": "Hello, World!"})

if __name__ == '__main__':
    app.run(debug=True)

Consul のキー/値ストアは一元的な構(gòu)成管理にも使用できるため、複數(shù)のサービスにわたる設(shè)定の管理が容易になります。

分散システムでは障害は避けられません。 Hystrix は、マイクロサービス アーキテクチャでフォールト トレランスとレイテンシ トレランスを?qū)g裝するのに役立つライブラリです。元々は Java 用に開発されましたが、Python ポートも利用可能です。

Hystrix の Python ポートの使用例を次に示します:

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class Item(BaseModel):
    name: str
    price: float

@app.post("/items")
async def create_item(item: Item):
    return {"item": item.dict()}

@app.get("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}

このコマンドはユーザー データの取得を試みますが、(ネットワークの問題などにより) 失敗した場合は、エラーをスローする代わりにフォールバック応答を返します。

マイクロサービスを設(shè)計するとき、特に分散トランザクションを扱うときは、データの一貫性を考慮することが重要です。 1 つのアプローチは、Saga パターンを使用することです。このパターンでは、一連のローカル トランザクションが各サービスを更新し、次のローカル トランザクションをトリガーするイベントを発行します。

Python で Saga を?qū)g裝する方法の簡単な例を次に示します。

from nameko.rpc import rpc

class GreetingService:
    name = "greeting_service"

    @rpc
    def hello(self, name):
        return f"Hello, {name}!"

このサーガは、注文を処理するための一連のステップを?qū)g行します。いずれかのステップが失敗すると、補償プロセスがトリガーされ、前のステップが取り消されます。

認証は、マイクロサービス アーキテクチャのもう 1 つの重要な側(cè)面です。 JSON Web トークン (JWT) は、サービス間のステートレス認証を?qū)g裝するための一般的な選択肢です。以下は、Flask マイクロサービスで JWT 認証を?qū)g裝する方法の例です:

syntax = "proto3";

package greeting;

service Greeter {
  rpc SayHello (HelloRequest) returns (HelloReply) {}
}

message HelloRequest {
  string name = 1;
}

message HelloReply {
  string message = 1;
}

この例では、サービス間のリクエストを認証するための JWT を作成および検証する方法を示します。

モニタリングは、マイクロサービス アーキテクチャの健全性とパフォーマンスを維持するために不可欠です。 Prometheus は、Python サービスとうまく統(tǒng)合できる、人気のあるオープンソース監(jiān)視システムです。 Prometheus モニタリングを Flask アプリケーションに追加する方法の例を次に示します:

import grpc
from concurrent import futures
import greeting_pb2
import greeting_pb2_grpc

class Greeter(greeting_pb2_grpc.GreeterServicer):
    def SayHello(self, request, context):
        return greeting_pb2.HelloReply(message=f"Hello, {request.name}!")

def serve():
    server = grpc.server(futures.ThreadPoolExecutor(max_workers=10))
    greeting_pb2_grpc.add_GreeterServicer_to_server(Greeter(), server)
    server.add_insecure_port('[::]:50051')
    server.start()
    server.wait_for_termination()

if __name__ == '__main__':
    serve()

このコードは、Flask アプリケーションの基本的なメトリクスを設(shè)定し、Prometheus が取得して分析できるようにします。

実際のアプリケーションでは、マイクロサービス アーキテクチャは非常に複雑になる可能性があります。例として電子商取引プラットフォームを考えてみましょう。ユーザー管理、製品カタログ、注文処理、在庫管理、支払い処理のための個別のサービスがある場合があります。

ユーザー管理サービスは、認証に Flask と JWT を使用して実裝される場合があります:

import consul

c = consul.Consul()

c.agent.service.register(
    "web",
    service_id="web-1",
    address="10.0.0.1",
    port=8080,
    tags=["rails"],
    check=consul.Check.http('http://10.0.0.1:8080', '10s')
)

製品カタログ サービスは、高パフォーマンスを?qū)g現(xiàn)するために FastAPI を使用する場合があります:

from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/api/hello', methods=['GET'])
def hello():
    return jsonify({"message": "Hello, World!"})

if __name__ == '__main__':
    app.run(debug=True)

注文処理サービスは、Nameko を使用し、分散トランザクションを管理するための Saga パターンを?qū)g裝する場合があります。

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class Item(BaseModel):
    name: str
    price: float

@app.post("/items")
async def create_item(item: Item):
    return {"item": item.dict()}

@app.get("/items/{item_id}")
async def read_item(item_id: int):
    return {"item_id": item_id}

在庫管理サービスは、他のサービスと効率的に通信するために gRPC を使用する場合があります。

from nameko.rpc import rpc

class GreetingService:
    name = "greeting_service"

    @rpc
    def hello(self, name):
        return f"Hello, {name}!"

最後に、支払い処理サービスは耐障害性のために Hystrix を使用する可能性があります:

syntax = "proto3";

package greeting;

service Greeter {
  rpc SayHello (HelloRequest) returns (HelloReply) {}
}

message HelloRequest {
  string name = 1;
}

message HelloReply {
  string message = 1;
}

これらのサービスは連攜して、電子商取引プラットフォームのさまざまな側(cè)面を処理します。これらは、各対話の特定の要件に応じて、REST API、gRPC 呼び出し、メッセージ キューの組み合わせを使用して相互に通信します。

結(jié)論として、Python は堅牢なマイクロサービスを構(gòu)築するためのライブラリとツールの豊富なエコシステムを提供します。これらのライブラリを活用し、マイクロサービス設(shè)計のベスト プラクティスに従うことで、開発者はスケーラブルで回復(fù)力があり、保守可能なシステムを作成できます。重要なのは、特定のユースケースごとに適切なツールを選択し、疎結(jié)合でありながら高度に結(jié)合したサービスを設(shè)計することです。慎重に計畫して実裝すれば、Python マイクロサービスはさまざまな業(yè)界にわたる複雑で高性能なシステムのバックボーンを形成できます。


101冊

101 Books は、著者 Aarav Joshi が共同設(shè)立した AI 主導(dǎo)の出版社です。高度な AI テクノロジーを活用することで、出版コストを信じられないほど低く抑えており、書籍によっては $4 という低価格で販売されており、誰もが質(zhì)の高い知識にアクセスできるようにしています。

Amazon で入手できる私たちの書籍 Golang Clean Code をチェックしてください。

最新情報とエキサイティングなニュースにご期待ください。本を購入する際は、Aarav Joshi を検索して、さらに多くのタイトルを見つけてください。提供されたリンクを使用して特別割引をお楽しみください!

私たちの作品

私たちの作品をぜひチェックしてください:

インベスターセントラル | 投資家中央スペイン人 | 中央ドイツの投資家 | スマートな暮らし | エポックとエコー | 不可解な謎 | ヒンドゥーヴァ | エリート開発者 | JS スクール


私たちは中程度です

Tech Koala Insights | エポックズ&エコーズワールド | インベスター?セントラル?メディア | 不可解な謎 中 | 科學(xué)とエポックミディアム | 現(xiàn)代ヒンドゥーヴァ

以上が堅牢なマイクロサービスを構(gòu)築するための強力な Python ライブラリの詳細內(nèi)容です。詳細については、PHP 中國語 Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內(nèi)容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當(dāng)する法的責(zé)任を負いません。盜作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡(luò)ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Pythonの不適格またはPytestフレームワークは、自動テストをどのように促進しますか? Pythonの不適格またはPytestフレームワークは、自動テストをどのように促進しますか? Jun 19, 2025 am 01:10 AM

Pythonの不適格でPytestは、自動テストの書き込み、整理、および実行を簡素化する2つの広く使用されているテストフレームワークです。 1.両方とも、テストケースの自動発見をサポートし、明確なテスト構(gòu)造を提供します。 pytestはより簡潔で、テスト\ _から始まる関數(shù)が必要です。 2。それらはすべて組み込みのアサーションサポートを持っています:Unittestはアサートエクイアル、アサートトルー、およびその他の方法を提供しますが、Pytestは拡張されたアサートステートメントを使用して障害の詳細を自動的に表示します。 3.すべてがテストの準備とクリーニングを処理するためのメカニズムを持っています:un

Pythonは、NumpyやPandasなどのライブラリとのデータ分析と操作にどのように使用できますか? Pythonは、NumpyやPandasなどのライブラリとのデータ分析と操作にどのように使用できますか? Jun 19, 2025 am 01:04 AM

pythonisidealfordataanalysisduetonumpyandpandas.1)numpyexcelsatnumericalcompitations withfast、多次元路面およびベクトル化された分離likenp.sqrt()

動的なプログラミング技術(shù)とは何ですか?また、Pythonでそれらを使用するにはどうすればよいですか? 動的なプログラミング技術(shù)とは何ですか?また、Pythonでそれらを使用するにはどうすればよいですか? Jun 20, 2025 am 12:57 AM

動的プログラミング(DP)は、複雑な問題をより単純なサブ問題に分解し、結(jié)果を保存して繰り返し計算を回避することにより、ソリューションプロセスを最適化します。主な方法は2つあります。1。トップダウン(暗記):問題を再帰的に分解し、キャッシュを使用して中間結(jié)果を保存します。 2。ボトムアップ(表):基本的な狀況からソリューションを繰り返し構(gòu)築します。フィボナッチシーケンス、バックパッキングの問題など、最大/最小値、最適なソリューション、または重複するサブ問題が必要なシナリオに適しています。Pythonでは、デコレータまたはアレイを通じて実裝でき、再帰的な関係を特定し、ベンチマークの狀況を定義し、空間の複雑さを最適化することに注意する必要があります。

__iter__と__next__を使用してPythonにカスタムイテレーターを?qū)g裝するにはどうすればよいですか? __iter__と__next__を使用してPythonにカスタムイテレーターを?qū)g裝するにはどうすればよいですか? Jun 19, 2025 am 01:12 AM

カスタムイテレーターを?qū)g裝するには、クラス內(nèi)の__iter__および__next__メソッドを定義する必要があります。 __iter__メソッドは、ループなどの反復(fù)環(huán)境と互換性があるように、通常は自己の反復(fù)オブジェクト自體を返します。 __next__メソッドは、各反復(fù)の値を制御し、シーケンスの次の要素を返し、アイテムがもうない場合、停止例外をスローする必要があります。 statusステータスを正しく追跡する必要があり、無限のループを避けるために終了條件を設(shè)定する必要があります。 fileファイルラインフィルタリングなどの複雑なロジック、およびリソースクリーニングとメモリ管理に注意を払ってください。 simple単純なロジックについては、代わりにジェネレーター関數(shù)の収率を使用することを検討できますが、特定のシナリオに基づいて適切な方法を選択する必要があります。

Pythonプログラミング言語とそのエコシステムの新たな傾向または將來の方向性は何ですか? Pythonプログラミング言語とそのエコシステムの新たな傾向または將來の方向性は何ですか? Jun 19, 2025 am 01:09 AM

Pythonの將來の傾向には、パフォーマンスの最適化、より強力なタイププロンプト、代替ランタイムの増加、およびAI/MLフィールドの継続的な成長が含まれます。第一に、CPYTHONは最適化を続け、スタートアップのより速い時間、機能通話の最適化、および提案された整數(shù)操作を通じてパフォーマンスを向上させ続けています。第二に、タイプのプロンプトは、コードセキュリティと開発エクスペリエンスを強化するために、言語とツールチェーンに深く統(tǒng)合されています。第三に、PyscriptやNuitkaなどの代替のランタイムは、新しい機能とパフォーマンスの利點を提供します。最後に、AIとデータサイエンスの分野は拡大し続けており、新興図書館はより効率的な開発と統(tǒng)合を促進します。これらの傾向は、Pythonが常に技術(shù)の変化に適応し、その主要な位置を維持していることを示しています。

ソケットを使用してPythonでネットワークプログラミングを?qū)g行するにはどうすればよいですか? ソケットを使用してPythonでネットワークプログラミングを?qū)g行するにはどうすればよいですか? Jun 20, 2025 am 12:56 AM

Pythonのソケットモジュールは、クライアントおよびサーバーアプリケーションの構(gòu)築に適した低レベルのネットワーク通信機能を提供するネットワークプログラミングの基礎(chǔ)です?;镜膜蔜CPサーバーを設(shè)定するには、Socket.Socket()を使用してオブジェクトを作成し、アドレスとポートをバインドし、.listen()を呼び出して接続をリッスンし、.accept()を介してクライアント接続を受け入れる必要があります。 TCPクライアントを構(gòu)築するには、ソケットオブジェクトを作成し、.connect()を呼び出してサーバーに接続する必要があります。次に、.sendall()を使用してデータと.recv()を送信して応答を受信します。複數(shù)のクライアントを処理するには、1つを使用できます。スレッド:接続するたびに新しいスレッドを起動します。 2。非同期I/O:たとえば、Asyncioライブラリは非ブロッキング通信を?qū)g現(xiàn)できます。注意すべきこと

Pythonクラスの多型 Pythonクラスの多型 Jul 05, 2025 am 02:58 AM

Pythonオブジェクト指向プログラミングのコアコンセプトであるPythonは、「1つのインターフェイス、複數(shù)の実裝」を指し、異なるタイプのオブジェクトの統(tǒng)一処理を可能にします。 1。多型は、メソッドの書き換えを通じて実裝されます。サブクラスは、親クラスの方法を再定義できます。たとえば、Animal ClassのSOCK()方法は、犬と貓のサブクラスに異なる実裝を持っています。 2.多型の実用的な用途には、グラフィカルドローイングプログラムでdraw()メソッドを均一に呼び出すなど、コード構(gòu)造を簡素化し、スケーラビリティを向上させる、ゲーム開発における異なる文字の共通の動作の処理などが含まれます。 3. Pythonの実裝多型を満たす必要があります:親クラスはメソッドを定義し、子クラスはメソッドを上書きしますが、同じ親クラスの継承は必要ありません。オブジェクトが同じ方法を?qū)g裝する限り、これは「アヒル型」と呼ばれます。 4.注意すべきことには、メンテナンスが含まれます

Pythonでリストをスライスするにはどうすればよいですか? Pythonでリストをスライスするにはどうすればよいですか? Jun 20, 2025 am 12:51 AM

Pythonリストスライスに対するコアの答えは、[start:end:step]構(gòu)文をマスターし、その動作を理解することです。 1.リストスライスの基本形式はリスト[start:end:step]です。ここで、開始は開始インデックス(含まれています)、endはend index(含まれていません)、ステップはステップサイズです。 2。デフォルトで開始を省略して、0から開始を開始し、デフォルトで終了して終了し、デフォルトでステップを1に省略します。 3。my_list[:n]を使用して最初のnアイテムを取得し、my_list [-n:]を使用して最後のnアイテムを取得します。 4.ステップを使用して、my_list [:: 2]などの要素をスキップして、均一な數(shù)字と負のステップ値を取得できます。 5.一般的な誤解には、終了インデックスが含まれません

See all articles