Matplotlib是基于Python語言的開源項目,其旨在為Python提供一個數據繪圖包,本文簡單介紹如何使用該程序包繪制漂亮的柱狀圖。
導入命令
1)設置工作環(huán)境%cd "F:\\Dropbox\\python"2)導入程序包import matplotlib.pyplot as plt import numpy as np from matplotlib.image import BboxImage from matplotlib._png import read_png import matplotlib.colors from matplotlib.cbook import get_sample_data import pandas as pd3)讀取數據data=pd.read_csv("CAR.csv")4)定義并繪制圖像 class RibbonBox(object):original_image = read_png(get_sample_data("Minduka_Present_Blue_Pack.png",asfileobj=False))cut_location = 70 b_and_h = original_image[:,:,2] color = original_image[:,:,2] - original_image[:,:,0] alpha = original_image[:,:,3] nx = original_image.shape[1]def __init__(self, color): rgb = matplotlib.colors.colorConverter.to_rgb(color)im = np.empty(self.original_image.shape, self.original_image.dtype)im[:,:,:3] = self.b_and_h[:,:,np.newaxis] im[:,:,:3] -= self.color[:,:,np.newaxis]*(1.-np.array(rgb)) im[:,:,3] = self.alphaself.im = imdef get_stretched_image(self, stretch_factor): stretch_factor = max(stretch_factor, 1) ny, nx, nch = self.im.shape ny2 = int(ny*stretch_factor)stretched_image = np.empty((ny2, nx, nch), self.im.dtype) cut = self.im[self.cut_location,:,:] stretched_image[:,:,:] = cut stretched_image[:self.cut_location,:,:] = \ self.im[:self.cut_location,:,:] stretched_image[-(ny-self.cut_location):,:,:] = \ self.im[-(ny-self.cut_location):,:,:]self._cached_im = stretched_image return stretched_image class RibbonBoxImage(BboxImage): zorder = 1def __init__(self, bbox, color, cmap = None, norm = None, interpolation=None, origin=None, filternorm=1, filterrad=4.0, resample = False, **kwargs ):BboxImage.__init__(self, bbox, cmap = cmap, norm = norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample = resample, **kwargs )self._ribbonbox = RibbonBox(color) self._cached_ny = Nonedef draw(self, renderer, *args, **kwargs):bbox = self.get_window_extent(renderer) stretch_factor = bbox.height / bbox.widthny = int(stretch_factor*self._ribbonbox.nx) if self._cached_ny != ny: arr = self._ribbonbox.get_stretched_image(stretch_factor) self.set_array(arr) self._cached_ny = nyBboxImage.draw(self, renderer, *args, **kwargs)if 1: from matplotlib.transforms import Bbox, TransformedBbox from matplotlib.ticker import ScalarFormatterfig, ax = plt.subplots()years = np.arange(2001,2008) box_colors = [(0.8, 0.2, 0.2), (0.2, 0.8, 0.2), (0.2, 0.2, 0.8), (0.7, 0.5, 0.8), (0.3, 0.8, 0.7), (0.4, 0.6, 0.3), (0.5, 0.5, 0.1), ] heights = data['price']fmt = ScalarFormatter(useOffset=False) ax.xaxis.set_major_formatter(fmt)for year, h, bc in zip(years, heights, box_colors): bbox0 = Bbox.from_extents(year-0.4, 0., year+0.4, h) bbox = TransformedBbox(bbox0, ax.transData) rb_patch = RibbonBoxImage(bbox, bc, interpolation="bicubic")ax.add_artist(rb_patch) ax.annotate(h, (year, h), va="bottom", ha="center") ax.set_title('The Price of Car')patch_gradient = BboxImage(ax.bbox, interpolation="bicubic", zorder=0.1, ) gradient = np.zeros((2, 2, 4), dtype=np.float) gradient[:,:,:3] = [1, 1, 0.] gradient[:,:,3] = [[0.1, 0.3],[0.3, 0.5]] patch_gradient.set_array(gradient) ax.add_artist(patch_gradient)ax.set_xlim(years[0]-0.5, years[-1]+0.5) ax.set_ylim(0, 15000)5)保存圖像fig.savefig('The Price of Car.png') plt.show()
輸出圖像如下
以上就是【Python教程】繪制漂亮的柱狀圖的內容,更多相關內容請關注PHP中文網(m.miracleart.cn)!

? AI ??

Undress AI Tool
??? ???? ??

Undresser.AI Undress
???? ?? ??? ??? ?? AI ?? ?

AI Clothes Remover
???? ?? ???? ??? AI ?????.

Clothoff.io
AI ? ???

Video Face Swap
??? ??? AI ?? ?? ??? ???? ?? ???? ??? ?? ????!

?? ??

??? ??

???++7.3.1
???? ?? ?? ?? ???

SublimeText3 ??? ??
??? ??, ???? ?? ????.

???? 13.0.1 ???
??? PHP ?? ?? ??

???? CS6
??? ? ?? ??

SublimeText3 Mac ??
? ??? ?? ?? ?????(SublimeText3)

Seaborn 's Loctplot? ???? ? ?? ?? ??? ??? ???? ??????. 2. ?? ???? sns.jointPlot (data = tips, x = "total_bill", y = "tip", ?? = "scatter")? ?? ?????. ??? ????? ?????? ??? ??? ?????. 3. ???? ?? ??? ??? = "reg"? ???? marginal_kws? ???? ?? ?? ???? ?????. 4. ??? ??? ? ?? "Hex"? ???? ?? ????.

??? ??? ".join (Words)? ?? join () ???? ?? ? ? ????. 2. ?? ??? ???? ?? MAP (str, ??) ?? [str (x) forxinnumbers]??? ???? ???????. 3. ?? ?? ??? ???? ??? ??? ?????? ???? ?? ?? ? ? ????. 4. '|'.join (f "[{item}]"furiteminitems) ??? ?? join ()? ?? ? ??? ????? ??? ?? ??? ??? ? ????.

PyoDBC ?? : PipinStallPyODBC ??? ???? ?????? ??????. 2. SQLSERVER ?? : PYODBC.connect () ???? ?? ????, ??, ??????, UID/PWD ?? Trusted_Connection? ?? ? ?? ???? ???? SQL ?? ?? Windows ??? ?? ?????. 3. ??? ????? ?????? : pyodbc.drivers ()? ???? 'sqlserver'? ?? ? ???? ??? ????? ??? ???? ??? 'sqlserver ? Odbcdriver17? ?? ??? ???? ??? ????? ??????. 4. ?? ???? ? ?? ??

pandas.melt ()? ???? ?? ???? ? ???? ???? ? ?????. ?? ID_VARS? ???? ? ? ??? ???? ????. ??, 4.Value_name = 'score'? ?? ?? ? ? ??? ???? ????? ??, ?? ? ??? ??? ? ?? ?????.

?? ??, ??? ? ??? ??? ?? ? ContactForm ??? ?????. 2.????, ?? ??? ?? ??? ???? ????, ??? ?? ? ? cleaned_data? ???? ??? ?????. ??? ??? ? ??? ??????. 3. ????? {{form.as_p}}? ???? ??? ????? {%csrf_token%}? ???? CSRF ??? ?????. 4. URL ???? Point / Contact / Contact_View??? ?????. modelform? ???? ??? ?? ???? ??? ??? ??????. ?? ?? ??? ??, HTML ??? ? ?? ????? ?? ??? ????, ?? ??? ?? ??? ?? ??? ?????.

pythontanbeoptimizedformemory-boundoperations? Headgroughgenerations, ??? ? ??? ??, ? ManagingObjectLifetimes.first, usegeneratorsinsteadoflistStoprocessLargedAtasetSoneitematime, theintintomemory.second? ?????

?? ?? ?? ? ?? ?? ??? ??? ??? ???? ?? ???? ?? ???? ???? ?? ?????. ?? ??? ?? ???? ??? ?, ? ?? ??? ????? ?? ???? ??? ? ??? ?? ??? ???? ??? ????. ???? ??? ??? ???? ?? ?? ?? ??? ???? ????? ????? ???? ?????? ????. ??? ??? ?? ??? ?????? ???? ?? ?? ??? ?????. cryptocurrency ???? ??? ?? ??? ?? ?? ??? ? ???? ??? ???? ?? ?? ?? ????. ?? ?? ??? ?? ?? ??? 24 ?? ?? ???? ??? ??, ?? ??? ?? ? ?? ?????? ?? ?????. ? ??? ?? ??? ?? ?? ?? ??? ??? ???? ?????.

iter ()? ??? ??? ?? ? ???? ?? ()? ?? ??? ?? ? ?????. 1. iterator ()? ???? ??? ?? ?? ??? ??? ???? ?????. 2. ?? ()? ???? ??? ??? ?? ??? ?? ? ? ??? ?? ??? ??; 3. ?? (???, ???)? ???? ??? ?????. 4. ??? ???? ?? ??? ???? ?? __iter __ () ? __next __ () ???? ???????. ???? ???? ?? ??? ??????? ???? ???? ?? ????? ???? ??????.
