


Bagaimanakah Saya Boleh Menyelesaikan Python `UnicodeDecodeError: codec 'ascii' tidak boleh menyahkod bait...`?
Dec 04, 2024 am 04:56 AMUnicodeDecodeError Resolution: Codec 'ascii' Tidak Dapat Menyahkod Bait
Penyelesaian Pantas
- Elakkan penyahkodan/pengekodan yang tidak perlu.
- Pastikan rentetan anda tidak dianggap sebagai UTF-8 dikodkan.
- Tukar rentetan kepada Unikod seawal mungkin.
- Atasi isu setempat (seperti yang diterangkan dalam soalan yang dipautkan).
- Tahan godaan menggunakan pembetulan muat semula pantas.
Memahami Unicode dan Python 2.x
UnicodeDecodeError biasanya berlaku apabila cuba menukar rentetan Python 2.x yang mengandungi aksara bukan ASCII kepada Unicode tanpa menyatakan pengekodannya.
Rentetan Unicode (jenis: unicode) mewakili urutan kod titik Unicode, manakala rentetan (jenis: str) mengandungi teks yang dikodkan (cth., UTF-8, UTF-16). Rentetan dinyahkodkan kepada Unikod, manakala Unikod dikodkan kepada rentetan.
Banyak senario, termasuk penukaran eksplisit, rentetan format dan gabungan rentetan, boleh mencetuskan UnicodeDecodeError apabila mengendalikan data bukan ASCII.
Input dan Penyahkodan
- Gunakan Unikod rentetan (diawalan 'u') untuk aksara bukan ASCII dalam kod sumber.
- Sediakan pengepala pengekodan kepada fail kod sumber untuk memudahkan penyahkodan yang betul.
- Gunakan io.open dengan pengekodan yang sesuai untuk menyahkod fail dengan cepat.
- Gunakan backports.csv untuk CSV bukan ASCII fail.
- Konfigurasikan pangkalan data untuk mengembalikan data dalam Unicode dan gunakan rentetan Unicode untuk pertanyaan.
- Nyahkod secara manual menggunakan string.decode(encoding) dengan pengekodan yang betul.
Pengendalian Perantaraan
- Kendalikan dengan rentetan Unicode seperti yang anda lakukan dengan biasa rentetan.
Output
- cetak mengekod Unikod berdasarkan pengekodan konsol.
- Gunakan io.open untuk menukar Unikod kepada rentetan bait yang dikodkan untuk fail.
- Pastikan konfigurasi pangkalan data yang betul untuk menulis Unicode data.
Pertimbangan Python 3
Walaupun Python 3 mengendalikan Unicode dengan lebih baik, adalah penting untuk memahami bahawa ia tidak disertakan dengan keupayaan Unicode asli. Pengekodan lalai ialah UTF-8, dan open() beroperasi dalam mod teks, mengembalikan str yang dinyahkod (Unicode) menggunakan pengekodan setempat.
Mengelakkan sys.setdefaultencoding('utf8')
Ini menggodam topeng yang mendasari isu dan mengganggu penghijrahan ke Python 3. Sebaliknya, atasi punca dan terima Unicode zen.
Atas ialah kandungan terperinci Bagaimanakah Saya Boleh Menyelesaikan Python `UnicodeDecodeError: codec 'ascii' tidak boleh menyahkod bait...`?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Python's Unittest and Pytest adalah dua kerangka ujian yang digunakan secara meluas yang memudahkan penulisan, penganjuran dan menjalankan ujian automatik. 1. Kedua -duanya menyokong penemuan automatik kes ujian dan menyediakan struktur ujian yang jelas: Unittest mentakrifkan ujian dengan mewarisi kelas ujian dan bermula dengan ujian \ _; Pytest lebih ringkas, hanya memerlukan fungsi bermula dengan ujian \ _. 2. Mereka semua mempunyai sokongan dakwaan terbina dalam: Unittest menyediakan kaedah AssertEqual, AssertTrue dan lain-lain, manakala PYTest menggunakan pernyataan menegaskan yang dipertingkatkan untuk memaparkan butiran kegagalan secara automatik. 3. Semua mempunyai mekanisme untuk mengendalikan penyediaan ujian dan pembersihan: un

Parameter lalai Python hanya dimulakan sekali apabila ditakrifkan. Jika objek yang boleh berubah (seperti senarai atau kamus) digunakan sebagai parameter lalai, tingkah laku yang tidak dijangka mungkin disebabkan. Sebagai contoh, apabila menggunakan senarai kosong sebagai parameter lalai, pelbagai panggilan ke fungsi akan menggunakan semula senarai yang sama dan bukannya menghasilkan senarai baru setiap kali. Masalah yang disebabkan oleh tingkah laku ini termasuk: 1. Perkongsian data yang tidak dijangka antara panggilan fungsi; 2. Hasil panggilan berikutnya dipengaruhi oleh panggilan sebelumnya, meningkatkan kesukaran debugging; 3. Ia menyebabkan kesilapan logik dan sukar untuk dikesan; 4. Mudah untuk mengelirukan kedua -dua pemaju baru dan berpengalaman. Untuk mengelakkan masalah, amalan terbaik adalah untuk menetapkan nilai lalai kepada tiada dan membuat objek baru di dalam fungsi, seperti menggunakan my_list = tiada bukan my_list = [] dan pada mulanya dalam fungsi

Python berfungsi dengan baik dengan bahasa dan sistem lain dalam seni bina mikroservis, kunci adalah bagaimana setiap perkhidmatan berjalan secara bebas dan berkomunikasi dengan berkesan. 1. Menggunakan API standard dan protokol komunikasi (seperti HTTP, REST, GRPC), Python membina API melalui rangka kerja seperti Flask dan FastAPI, dan menggunakan permintaan atau HTTPX untuk memanggil perkhidmatan bahasa lain; 2. Menggunakan broker mesej (seperti Kafka, Rabbitmq, Redis) untuk merealisasikan komunikasi tak segerak, perkhidmatan Python dapat menerbitkan mesej untuk pengguna bahasa lain untuk memproses, meningkatkan sistem decoupling, skalabilitas dan toleransi kesalahan; 3. Memperluas atau membenamkan runtime bahasa lain (seperti Jython) melalui C/C untuk mencapai pelaksanaan

Senarai Python, Kamus dan Pengumpulan Pengumpulan meningkatkan kebolehbacaan kod dan kecekapan penulisan melalui sintaks ringkas. Mereka sesuai untuk memudahkan operasi lelaran dan penukaran, seperti menggantikan gelung berbilang baris dengan kod satu baris untuk melaksanakan transformasi atau penapisan unsur. 1. Senarai pemantauan seperti [x2forxinrange (10)] secara langsung boleh menghasilkan urutan persegi; 2. KESELAMATAN KAMI seperti {x: x2forxinrange (5)} jelas menyatakan pemetaan nilai utama; 3. Penapisan bersyarat seperti [XforxinNumbersifx%2 == 0] membuat logik penapisan lebih intuitif; 4. Keadaan kompleks juga boleh tertanam, seperti menggabungkan penapisan pelbagai syarat atau ekspresi ternary; Tetapi operasi bersarang atau kesan sampingan yang berlebihan harus dielakkan untuk mengelakkan mengurangkan kebolehkerjaan. Penggunaan derivasi yang rasional dapat mengurangkan

Pythonisidealfordataanalysisysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationswithfast, multi-dimensiArarraySandvectorizedoperationsLikenp.sqrt ()

Pengaturcaraan Dinamik (DP) mengoptimumkan proses penyelesaian dengan memecahkan masalah kompleks ke dalam subproblem yang lebih mudah dan menyimpan hasilnya untuk mengelakkan pengiraan berulang. Terdapat dua kaedah utama: 1. Top-down (Hafalan): Recursif menguraikan masalah dan menggunakan cache untuk menyimpan hasil pertengahan; 2. Bottom-Up (Jadual): Bangun secara beransur-ansur dari keadaan asas. Sesuai untuk senario di mana nilai maksimum/minimum, penyelesaian optimum atau subproblem yang bertindih diperlukan, seperti urutan Fibonacci, masalah backpacking, dan lain -lain.

Untuk melaksanakan iterator tersuai, anda perlu menentukan kaedah __iter__ dan __Next__ di dalam kelas. ① Kaedah __iter__ mengembalikan objek iterator itu sendiri, biasanya diri sendiri, bersesuaian dengan persekitaran berulang seperti untuk gelung; ② Kaedah __Next__ mengawal nilai setiap lelaran, mengembalikan elemen seterusnya dalam urutan, dan apabila tidak ada lagi item, pengecualian hentian harus dibuang; ③ Status mesti dikesan dengan betul dan keadaan penamatan mesti ditetapkan untuk mengelakkan gelung tak terhingga; ④ Logik kompleks seperti penapisan talian fail, dan perhatikan pembersihan sumber dan pengurusan memori; ⑤ Untuk logik mudah, anda boleh mempertimbangkan menggunakan hasil fungsi penjana sebaliknya, tetapi anda perlu memilih kaedah yang sesuai berdasarkan senario tertentu.

Trend masa depan dalam Python termasuk pengoptimuman prestasi, jenis yang lebih kuat, peningkatan runtime alternatif, dan pertumbuhan berterusan bidang AI/ML. Pertama, Cpython terus mengoptimumkan, meningkatkan prestasi melalui masa permulaan yang lebih cepat, pengoptimuman panggilan fungsi dan operasi integer yang dicadangkan; Kedua, jenis petikan sangat terintegrasi ke dalam bahasa dan alat untuk meningkatkan pengalaman keselamatan dan pembangunan kod; Ketiga, runtime alternatif seperti Pyscript dan Nuitka menyediakan fungsi baru dan kelebihan prestasi; Akhirnya, bidang AI dan Sains Data terus berkembang, dan perpustakaan yang muncul mempromosikan pembangunan dan integrasi yang lebih cekap. Trend ini menunjukkan bahawa Python sentiasa menyesuaikan diri dengan perubahan teknologi dan mengekalkan kedudukan utama.
