国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Rumah pangkalan data tutorial mysql Fahami teknologi pembahagian dan pembahagian MySQL dan PostgreSQL

Fahami teknologi pembahagian dan pembahagian MySQL dan PostgreSQL

Jul 14, 2023 pm 09:41 PM
teknologi Sharding mysql: partition postgresql: partition

Fahami teknologi pembahagian dan pembahagian MySQL dan PostgreSQL

Abstrak:
MySQL dan PostgreSQL ialah dua sistem pengurusan pangkalan data relasi (RDBMS) yang sama menyediakan teknologi pembahagian dan pembahagian untuk mengoptimumkan storan data dan kecekapan pertanyaan. Artikel ini akan memperkenalkan konsep asas pembahagian dan pembahagian dalam MySQL dan PostgreSQL, serta menunjukkan beberapa kod sampel untuk menggambarkan cara menggunakan teknologi ini.

1. Teknologi pembahagian MySQL

  1. Konsep pembahagian
    Teknologi pembahagian MySQL adalah untuk membahagikan jadual kepada berbilang partition bebas Setiap partition boleh menyimpan dan menanyakan data secara bebas, dengan itu meningkatkan kecekapan pertanyaan dan memberikan prestasi yang lebih baik. Biasanya pembahagian boleh dilakukan berdasarkan lajur tertentu dalam jadual (seperti tarikh, rantau, dsb.), atau peraturan pembahagian boleh ditakrifkan melalui julat, senarai, cincang, dsb.
  2. Contoh kod untuk partition
    Berikut ialah contoh kod menggunakan teknologi partition MySQL:

Buat jadual yang mengandungi tarikh dan jualan:
CIPTA jualan JADUAL (

id INT NOT NULL AUTO_INCREMENT,
date DATE,
amount DECIMAL(10,2),
PRIMARY KEY (id)

) ENGINE=InnoDB;

laju mengikut tarikh partition julat:

UBAH JADUAL jualan
PEMBAHAGIAN MENGIKUT Julat (TAHUN(tarikh))
(

PARTITION p0 VALUES LESS THAN (2010),
PARTITION p1 VALUES LESS THAN (2011),
PARTITION p2 VALUES LESS THAN (2012),
PARTITION p3 VALUES LESS THAN (2013),
PARTITION p4 VALUES LESS THAN MAXVALUE

);

Melalui kod di atas, jadual jualan dibahagikan mengikut julat tarikh, dan data dalam setiap partition boleh disimpan dan pertanyaan secara bebas.

2. Teknologi pembahagian PostgreSQL

    Konsep pembahagian
  1. Teknologi pembahagian PostgreSQL adalah untuk membahagikan jadual kepada berbilang sub-jadual, setiap sub-jadual mengandungi sebahagian daripada data, dengan itu meningkatkan kecekapan pertanyaan dan mengurangkan penggunaan ruang storan. Peraturan pembahagian boleh ditakrifkan menggunakan julat, senarai, cincang, dsb., dan setiap sub-jadual boleh menyimpan dan bertanya data secara bebas.
  2. Contoh kod untuk partition
  3. Berikut ialah contoh kod menggunakan teknologi partition PostgreSQL:
Buat jadual yang mengandungi tarikh dan jualan:

CIPTA jualan JADUAL (
rreee

);

tentukan jadual induk

C dan perhalusi semula

C CIPTA TABLE sales_partition (

id SERIAL,
date DATE,
amount DECIMAL(10,2),
PRIMARY KEY (id)

) PARTITION BY Julat (date_range);

Cipta dua subjadual:

CREATE TABLE sales_jan2018 PARTITION OF sales_partition

date_range TSRANGE,
CHECK (date_range IS NOT NULL)
CREATE_PARTITION OF 18_febTITION OF sales11

Dengan kod di atas, buat A parent table sales_partition dan dua jadual anak sales_jan2018 dan sales_feb2018 dibuat. Setiap jadual anak mengandungi data dalam julat tarikh yang ditentukan.

Kesimpulan:

Kedua-dua MySQL dan PostgreSQL menyediakan teknologi pembahagian dan pembahagian untuk membantu mengoptimumkan storan data dan kecekapan pertanyaan. Dengan menggunakan teknik ini, anda boleh mencapai prestasi dan kebolehskalaan yang lebih baik apabila memproses sejumlah besar data. Walau bagaimanapun, adalah perlu untuk memilih strategi pembahagian dan pembahagian yang sesuai berdasarkan keperluan dan senario perniagaan tertentu, dan untuk mereka bentuk dan mengurus struktur partition/sharding secara munasabah.

Atas ialah kandungan terperinci Fahami teknologi pembahagian dan pembahagian MySQL dan PostgreSQL. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial PHP
1502
276
DualBEV: mengatasi BEVFormer dan BEVDet4D dengan ketara, buka buku! DualBEV: mengatasi BEVFormer dan BEVDet4D dengan ketara, buka buku! Mar 21, 2024 pm 05:21 PM

Kertas kerja ini meneroka masalah mengesan objek dengan tepat dari sudut pandangan yang berbeza (seperti perspektif dan pandangan mata burung) dalam pemanduan autonomi, terutamanya cara mengubah ciri dari perspektif (PV) kepada ruang pandangan mata burung (BEV) dengan berkesan dilaksanakan melalui modul Transformasi Visual (VT). Kaedah sedia ada secara amnya dibahagikan kepada dua strategi: penukaran 2D kepada 3D dan 3D kepada 2D. Kaedah 2D-ke-3D meningkatkan ciri 2D yang padat dengan meramalkan kebarangkalian kedalaman, tetapi ketidakpastian yang wujud dalam ramalan kedalaman, terutamanya di kawasan yang jauh, mungkin menimbulkan ketidaktepatan. Manakala kaedah 3D ke 2D biasanya menggunakan pertanyaan 3D untuk mencuba ciri 2D dan mempelajari berat perhatian bagi kesesuaian antara ciri 3D dan 2D melalui Transformer, yang meningkatkan masa pengiraan dan penggunaan.

Adakah anda benar-benar menguasai penukaran sistem koordinat? Isu berbilang sensor yang tidak dapat dipisahkan daripada pemanduan autonomi Adakah anda benar-benar menguasai penukaran sistem koordinat? Isu berbilang sensor yang tidak dapat dipisahkan daripada pemanduan autonomi Oct 12, 2023 am 11:21 AM

Artikel perintis dan utama pertama terutamanya memperkenalkan beberapa sistem koordinat yang biasa digunakan dalam teknologi pemanduan autonomi, dan cara melengkapkan korelasi dan penukaran antara mereka, dan akhirnya membina model persekitaran bersatu. Fokus di sini adalah untuk memahami penukaran daripada kenderaan kepada badan tegar kamera (parameter luaran), penukaran kamera kepada imej (parameter dalaman) dan penukaran unit imej kepada piksel. Penukaran daripada 3D kepada 2D akan mempunyai herotan, terjemahan, dsb. Perkara utama: Sistem koordinat kenderaan dan sistem koordinat badan kamera perlu ditulis semula: sistem koordinat satah dan sistem koordinat piksel Kesukaran: herotan imej mesti dipertimbangkan Kedua-dua penyahherotan dan penambahan herotan diberi pampasan pada satah imej. 2. Pengenalan Terdapat empat sistem penglihatan secara keseluruhannya: sistem koordinat satah piksel (u, v), sistem koordinat imej (x, y), sistem koordinat kamera () dan sistem koordinat dunia (). Terdapat hubungan antara setiap sistem koordinat,

Kertas Stable Diffusion 3 akhirnya telah dikeluarkan, dan butiran seni bina didedahkan Adakah ia akan membantu untuk menghasilkan semula Sora? Kertas Stable Diffusion 3 akhirnya telah dikeluarkan, dan butiran seni bina didedahkan Adakah ia akan membantu untuk menghasilkan semula Sora? Mar 06, 2024 pm 05:34 PM

Kertas StableDiffusion3 akhirnya di sini! Model ini dikeluarkan dua minggu lalu dan menggunakan seni bina DiT (DiffusionTransformer) yang sama seperti Sora. Ia menimbulkan kekecohan apabila ia dikeluarkan. Berbanding dengan versi sebelumnya, kualiti imej yang dijana oleh StableDiffusion3 telah dipertingkatkan dengan ketara Ia kini menyokong gesaan berbilang tema, dan kesan penulisan teks juga telah dipertingkatkan, dan aksara bercelaru tidak lagi muncul. StabilityAI menegaskan bahawa StableDiffusion3 ialah satu siri model dengan saiz parameter antara 800M hingga 8B. Julat parameter ini bermakna model boleh dijalankan terus pada banyak peranti mudah alih, dengan ketara mengurangkan penggunaan AI

Artikel ini sudah cukup untuk anda membaca tentang pemanduan autonomi dan ramalan trajektori! Artikel ini sudah cukup untuk anda membaca tentang pemanduan autonomi dan ramalan trajektori! Feb 28, 2024 pm 07:20 PM

Ramalan trajektori memainkan peranan penting dalam pemanduan autonomi Ramalan trajektori pemanduan autonomi merujuk kepada meramalkan trajektori pemanduan masa hadapan kenderaan dengan menganalisis pelbagai data semasa proses pemanduan kenderaan. Sebagai modul teras pemanduan autonomi, kualiti ramalan trajektori adalah penting untuk kawalan perancangan hiliran. Tugas ramalan trajektori mempunyai timbunan teknologi yang kaya dan memerlukan kebiasaan dengan persepsi dinamik/statik pemanduan autonomi, peta ketepatan tinggi, garisan lorong, kemahiran seni bina rangkaian saraf (CNN&GNN&Transformer), dll. Sangat sukar untuk bermula! Ramai peminat berharap untuk memulakan ramalan trajektori secepat mungkin dan mengelakkan perangkap Hari ini saya akan mengambil kira beberapa masalah biasa dan kaedah pembelajaran pengenalan untuk ramalan trajektori! Pengetahuan berkaitan pengenalan 1. Adakah kertas pratonton teratur? A: Tengok survey dulu, hlm

Semakan! Gabungan model mendalam (LLM/model asas/pembelajaran bersekutu/penalaan halus, dsb.) Semakan! Gabungan model mendalam (LLM/model asas/pembelajaran bersekutu/penalaan halus, dsb.) Apr 18, 2024 pm 09:43 PM

Pada 23 September, kertas kerja "DeepModelFusion:ASurvey" diterbitkan oleh Universiti Teknologi Pertahanan Nasional, JD.com dan Institut Teknologi Beijing. Gabungan/penggabungan model dalam ialah teknologi baru muncul yang menggabungkan parameter atau ramalan berbilang model pembelajaran mendalam ke dalam satu model. Ia menggabungkan keupayaan model yang berbeza untuk mengimbangi bias dan ralat model individu untuk prestasi yang lebih baik. Gabungan model mendalam pada model pembelajaran mendalam berskala besar (seperti LLM dan model asas) menghadapi beberapa cabaran, termasuk kos pengiraan yang tinggi, ruang parameter berdimensi tinggi, gangguan antara model heterogen yang berbeza, dsb. Artikel ini membahagikan kaedah gabungan model dalam sedia ada kepada empat kategori: (1) "Sambungan corak", yang menghubungkan penyelesaian dalam ruang berat melalui laluan pengurangan kerugian untuk mendapatkan gabungan model awal yang lebih baik.

Model dunia penjanaan video adegan pemanduan berbilang paparan autonomi | Model dunia penjanaan video adegan pemanduan berbilang paparan autonomi | Oct 23, 2023 am 11:13 AM

Beberapa pemikiran peribadi pengarang Dalam bidang pemanduan autonomi, dengan pembangunan sub-tugas/penyelesaian hujung-ke-hujung berasaskan BEV, data latihan berbilang paparan berkualiti tinggi dan pembinaan adegan simulasi yang sepadan telah menjadi semakin penting. Sebagai tindak balas kepada titik kesakitan tugas semasa, "kualiti tinggi" boleh dipecahkan kepada tiga aspek: senario ekor panjang dalam dimensi berbeza: seperti kenderaan jarak dekat dalam data halangan dan sudut arah tepat semasa pemotongan kereta, dan data garis lorong. . Ini selalunya bergantung pada sejumlah besar pengumpulan data dan strategi perlombongan data yang kompleks, yang memerlukan kos yang tinggi. Nilai sebenar 3D - imej sangat konsisten: Pemerolehan data BEV semasa sering dipengaruhi oleh ralat dalam pemasangan/penentukuran sensor, peta berketepatan tinggi dan algoritma pembinaan semula itu sendiri. ini membawa saya kepada

GSLAM |. Seni bina dan penanda aras umum SLAM GSLAM |. Seni bina dan penanda aras umum SLAM Oct 20, 2023 am 11:37 AM

Tiba-tiba menemui kertas 19 tahun GSLAM: Rangka Kerja SLAM Umum dan kod sumber terbuka Penanda Aras: https://github.com/zdzhaoyong/GSLAM Pergi terus ke teks penuh dan rasai kualiti karya ini~1 Teknologi SLAM Abstrak telah mencapai banyak kejayaan baru-baru ini dan menarik ramai yang menarik perhatian syarikat berteknologi tinggi. Walau bagaimanapun, cara untuk antara muka dengan algoritma sedia ada atau yang baru muncul untuk melaksanakan penandaarasan dengan cekap pada kelajuan, kekukuhan dan mudah alih masih menjadi persoalan. Dalam kertas kerja ini, satu platform SLAM baharu yang dipanggil GSLAM dicadangkan, yang bukan sahaja menyediakan keupayaan penilaian tetapi juga menyediakan penyelidik dengan cara yang berguna untuk membangunkan sistem SLAM mereka sendiri dengan pantas.

Lebih daripada sekadar Gaussian 3D! Gambaran keseluruhan terkini teknik pembinaan semula 3D yang terkini Lebih daripada sekadar Gaussian 3D! Gambaran keseluruhan terkini teknik pembinaan semula 3D yang terkini Jun 02, 2024 pm 06:57 PM

Ditulis di atas & Pemahaman peribadi penulis ialah pembinaan semula 3D berasaskan imej ialah tugas mencabar yang melibatkan membuat inferens bentuk 3D objek atau pemandangan daripada set imej input. Kaedah berasaskan pembelajaran telah menarik perhatian kerana keupayaan mereka untuk menganggar secara langsung bentuk 3D. Kertas ulasan ini memfokuskan pada teknik pembinaan semula 3D yang canggih, termasuk menjana novel, pandangan ghaib. Gambaran keseluruhan perkembangan terkini dalam kaedah percikan Gaussian disediakan, termasuk jenis input, struktur model, perwakilan output dan strategi latihan. Cabaran yang tidak dapat diselesaikan dan hala tuju masa depan turut dibincangkan. Memandangkan kemajuan pesat dalam bidang ini dan banyak peluang untuk meningkatkan kaedah pembinaan semula 3D, pemeriksaan menyeluruh terhadap algoritma nampaknya penting. Oleh itu, kajian ini memberikan gambaran menyeluruh tentang kemajuan terkini dalam serakan Gaussian. (Leret ibu jari anda ke atas

See all articles