国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

首頁 後端開發(fā) Python教學 編寫高效且可讀的 Python 程式碼的強大技術(shù)

編寫高效且可讀的 Python 程式碼的強大技術(shù)

Oct 31, 2024 pm 07:06 PM

Powerful Techniques for Writing Efficient and Readable Python Code

Python 以其簡單性和多功能性而聞名,但即使是經(jīng)驗豐富的開發(fā)人員也會從採用最大化效能和可讀性的最佳實踐中受益。隨著資料科學、機器學習和 Python 網(wǎng)路開發(fā)的興起,掌握高效的程式碼技術(shù)已成為在當今快速發(fā)展的技術(shù)環(huán)境中保持競爭力的必須條件。在這裡,我們將深入探討 20 種有效的技術(shù)來提高 Python 程式碼的效能和可讀性,無論您是在處理複雜的專案還是快速的自動化腳本。

1.使用生成器來節(jié)省記憶體

生成器非常適合在不使用過多記憶體的情況下處理大型資料集。它們一次產(chǎn)生一份數(shù)據(jù),而不是將所有數(shù)據(jù)保存在記憶體中。例如,您可以使用生成器逐行讀取大型日誌檔案。

def read_large_file(file_path):
    with open(file_path, 'r') as file:
        for line in file:
            yield line.strip()

這種方法對於資料處理或批次訓練等任務(wù)特別有用,在這些任務(wù)中,使用有限的記憶體是必不可少的。

2.使用 .setdefault() 設(shè)定預設(shè)值

如果您需要使用預設(shè)值初始化字典中的鍵,.setdefault() 可以讓您免於手動檢查。

inventory = {"jeans": 500, "top": 600}
inventory.setdefault("shoes", 0)
print(inventory)

這使得管理預設(shè)值更加簡潔,且不需要額外的 if 語句。

3.用字典取代 if-elif 鏈

使用字典來映射函數(shù)而不是長的 if-elif 鏈使程式碼更乾淨且更易於維護。

def start(): print("Start")
def stop(): print("Stop")
actions = {"start": start, "stop": stop}
action = "start"
actions.get(action, lambda: print("Invalid"))()

這種結(jié)構(gòu)提高了可讀性和效能,特別是在大型決策樹中。

4.使用計數(shù)器簡化計數(shù)

集合模組中的 Counter 類別是簡化 Python 中計數(shù)任務(wù)(例如頻率分析)的好方法。

from collections import Counter
words = ["apple", "banana", "apple", "orange", "banana"]
counts = Counter(words)
print(counts)

它無需創(chuàng)建自訂計數(shù)函數(shù),並且高效且易於使用。

5.透過記憶化最佳化遞歸

記憶化儲存昂貴的函數(shù)呼叫的結(jié)果,這在斐波那契計算等遞歸演算法中特別有用。

from functools import lru_cache

@lru_cache(maxsize=1000)
def fibonacci(n):
    if n < 2:
        return n
    return fibonacci(n - 1) + fibonacci(n - 2)

這種方法以最少的額外記憶體為代價降低了時間複雜度。

6.使用裝飾器增加彈性

Python 裝飾器對於將可重複使用功能應(yīng)用於多個函數(shù)非常有用,例如日誌記錄或計時,而無需修改核心邏輯。

import time

def timer(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        print(f"{func.__name__} took {time.time() - start_time:.6f} seconds")
        return result
    return wrapper

@timer
def slow_function():
    time.sleep(1)

slow_function()

7.使用 dataclass 讓資料模型變得清晰

Python 的資料類別透過自動產(chǎn)生 init、repr 和比較方法,使定義簡單的資料模型變得更容易且更具可讀性。

def read_large_file(file_path):
    with open(file_path, 'r') as file:
        for line in file:
            yield line.strip()

這有助於減少樣板程式碼並保持資料結(jié)構(gòu)清潔和可維護。

8.結(jié)構(gòu)條件與匹配

使用 Python 3.10,結(jié)構(gòu)模式匹配允許您匹配複雜的資料結(jié)構(gòu),而無需冗長的 if-else 語句。

inventory = {"jeans": 500, "top": 600}
inventory.setdefault("shoes", 0)
print(inventory)

9.將鍊式 and 替換為 all()

要一次驗證多個條件,請使用 all() 來保持程式碼簡潔和可讀。

def start(): print("Start")
def stop(): print("Stop")
actions = {"start": start, "stop": stop}
action = "start"
actions.get(action, lambda: print("Invalid"))()

10。使用列表推導式

列表推導式使循環(huán)簡潔且富有表現(xiàn)力,特別是對於簡單的轉(zhuǎn)換。

from collections import Counter
words = ["apple", "banana", "apple", "orange", "banana"]
counts = Counter(words)
print(counts)

它們比傳統(tǒng)循環(huán)更有效率、更容易閱讀。

11。理解並使用生成器表達式

對於不需要清單的情況,請使用生成器表達式以獲得更好的記憶體效率。

from functools import lru_cache

@lru_cache(maxsize=1000)
def fibonacci(n):
    if n < 2:
        return n
    return fibonacci(n - 1) + fibonacci(n - 2)

生成器表達式透過按需產(chǎn)生值來減少記憶體使用。

12。嘗試使用 zip() 進行平行迭代

zip() 函數(shù)可以輕鬆並行迭代多個列表。

import time

def timer(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        print(f"{func.__name__} took {time.time() - start_time:.6f} seconds")
        return result
    return wrapper

@timer
def slow_function():
    time.sleep(1)

slow_function()

13。使用 with 語句安全地處理檔案

with 語句確保檔案在套件完成後正確關(guān)閉,使其成為檔案處理的理想選擇。

from dataclasses import dataclass

@dataclass
class Employee:
    name: str
    id: int
    salary: float

e = Employee("Alice", 1, 50000)
print(e)

這簡化了資源管理並最大限度地減少發(fā)生錯誤的可能性。

14。透過類型提示加入安全性

類型提示使您的程式碼更具可讀性,並幫助 IDE 在運行前檢測潛在錯誤。

def describe_point(point):
    match point:
        case (0, 0):
            return "Origin"
        case (0, y):
            return f"On Y-axis at {y}"
        case (x, 0):
            return f"On X-axis at {x}"
        case (x, y):
            return f"Point at ({x}, {y})"

類型提示提高了可維護性,尤其是在大型程式碼庫中。

15。使用 any() for 或 條件簡化

要檢查清單中的任何條件是否為真,any() 比鍊式 or 條件更簡潔。

fields = ["name", "email", "age"]
data = {"name": "Alice", "email": "alice@example.com", "age": 25}
if all(field in data for field in fields):
    print("All fields are present")

16。利用 try- except-else-finally

這種結(jié)構(gòu)允許更清晰的錯誤處理,並最終增加管理不同場景的靈活性。

squares = [x ** 2 for x in range(10)]

17。使用命名元組組織資料

命名元組為元組添加結(jié)構(gòu),使它們更具可讀性和自記錄性。

sum_of_squares = sum(x ** 2 for x in range(1000))

18。使用 f 字串改進 str 連線

f 字串比傳統(tǒng)的連接方法更快、更易讀,尤其是對於複雜的表達式。

names = ["Alice", "Bob"]
ages = [25, 30]
for name, age in zip(names, ages):
    print(f"{name} is {age} years old")

19。使用 itertools 進行高效率迭代

itertools 模組提供高效率的循環(huán)選項,例如產(chǎn)生排列、組合或重複元素。

def read_large_file(file_path):
    with open(file_path, 'r') as file:
        for line in file:
            yield line.strip()

20。使用上下文管理器保持程式碼整潔

自訂情境管理器可協(xié)助管理資源或清理任務(wù),提高可讀性和安全性。

inventory = {"jeans": 500, "top": 600}
inventory.setdefault("shoes", 0)
print(inventory)

透過整合這些技術(shù),您可以編寫出不僅更有效率而且更易讀和可維護的 Python 程式碼。嘗試這些技巧,並逐漸將它們?nèi)谌肽娜粘>幋a實踐中。

以上是編寫高效且可讀的 Python 程式碼的強大技術(shù)的詳細內(nèi)容。更多資訊請關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

本網(wǎng)站聲明
本文內(nèi)容由網(wǎng)友自願投稿,版權(quán)歸原作者所有。本站不承擔相應(yīng)的法律責任。如發(fā)現(xiàn)涉嫌抄襲或侵權(quán)的內(nèi)容,請聯(lián)絡(luò)admin@php.cn

熱AI工具

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅(qū)動的應(yīng)用程序,用於創(chuàng)建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發(fā)環(huán)境

Dreamweaver CS6

Dreamweaver CS6

視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

Python的UNITDEST或PYTEST框架如何促進自動測試? Python的UNITDEST或PYTEST框架如何促進自動測試? Jun 19, 2025 am 01:10 AM

Python的unittest和pytest是兩種廣泛使用的測試框架,它們都簡化了自動化測試的編寫、組織和運行。 1.二者均支持自動發(fā)現(xiàn)測試用例並提供清晰的測試結(jié)構(gòu):unittest通過繼承TestCase類並以test\_開頭的方法定義測試;pytest則更為簡潔,只需以test\_開頭的函數(shù)即可。 2.它們都內(nèi)置斷言支持:unittest提供assertEqual、assertTrue等方法,而pytest使用增強版的assert語句,能自動顯示失敗詳情。 3.均具備處理測試準備與清理的機制:un

如何將Python用於數(shù)據(jù)分析和與Numpy和Pandas等文庫進行操作? 如何將Python用於數(shù)據(jù)分析和與Numpy和Pandas等文庫進行操作? Jun 19, 2025 am 01:04 AM

pythonisidealfordataanalysisionduetonumpyandpandas.1)numpyExccelSatnumericalComputationswithFast,多dimensionalArraysAndRaysAndOrsAndOrsAndOffectorizedOperationsLikenp.sqrt()

什麼是動態(tài)編程技術(shù),如何在Python中使用它們? 什麼是動態(tài)編程技術(shù),如何在Python中使用它們? Jun 20, 2025 am 12:57 AM

動態(tài)規(guī)劃(DP)通過將復雜問題分解為更簡單的子問題並存儲其結(jié)果以避免重複計算,來優(yōu)化求解過程。主要方法有兩種:1.自頂向下(記憶化):遞歸分解問題,使用緩存存儲中間結(jié)果;2.自底向上(表格化):從基礎(chǔ)情況開始迭代構(gòu)建解決方案。適用於需要最大/最小值、最優(yōu)解或存在重疊子問題的場景,如斐波那契數(shù)列、背包問題等。在Python中,可通過裝飾器或數(shù)組實現(xiàn),並應(yīng)注意識別遞推關(guān)係、定義基準情況及優(yōu)化空間複雜度。

如何使用__ITER__和__NEXT __在Python中實現(xiàn)自定義迭代器? 如何使用__ITER__和__NEXT __在Python中實現(xiàn)自定義迭代器? Jun 19, 2025 am 01:12 AM

要實現(xiàn)自定義迭代器,需在類中定義__iter__和__next__方法。 ①__iter__方法返回迭代器對象自身,通常為self,以兼容for循環(huán)等迭代環(huán)境;②__next__方法控制每次迭代的值,返回序列中的下一個元素,當無更多項時應(yīng)拋出StopIteration異常;③需正確跟蹤狀態(tài)並設(shè)置終止條件,避免無限循環(huán);④可封裝複雜邏輯如文件行過濾,同時注意資源清理與內(nèi)存管理;⑤對簡單邏輯可考慮使用生成器函數(shù)yield替代,但需結(jié)合具體場景選擇合適方式。

Python編程語言及其生態(tài)系統(tǒng)的新興趨勢或未來方向是什麼? Python編程語言及其生態(tài)系統(tǒng)的新興趨勢或未來方向是什麼? Jun 19, 2025 am 01:09 AM

Python的未來趨勢包括性能優(yōu)化、更強的類型提示、替代運行時的興起及AI/ML領(lǐng)域的持續(xù)增長。首先,CPython持續(xù)優(yōu)化,通過更快的啟動時間、函數(shù)調(diào)用優(yōu)化及擬議中的整數(shù)操作改進提升性能;其次,類型提示深度集成至語言與工具鏈,增強代碼安全性與開發(fā)體驗;第三,PyScript、Nuitka等替代運行時提供新功能與性能優(yōu)勢;最後,AI與數(shù)據(jù)科學領(lǐng)域持續(xù)擴張,新興庫推動更高效的開發(fā)與集成。這些趨勢表明Python正不斷適應(yīng)技術(shù)變化,保持其領(lǐng)先地位。

如何使用插座在Python中執(zhí)行網(wǎng)絡(luò)編程? 如何使用插座在Python中執(zhí)行網(wǎng)絡(luò)編程? Jun 20, 2025 am 12:56 AM

Python的socket模塊是網(wǎng)絡(luò)編程的基礎(chǔ),提供低級網(wǎng)絡(luò)通信功能,適用於構(gòu)建客戶端和服務(wù)器應(yīng)用。要設(shè)置基本TCP服務(wù)器,需使用socket.socket()創(chuàng)建對象,綁定地址和端口,調(diào)用.listen()監(jiān)聽連接,並通過.accept()接受客戶端連接。構(gòu)建TCP客戶端需創(chuàng)建socket對像後調(diào)用.connect()連接服務(wù)器,再使用.sendall()發(fā)送數(shù)據(jù)和??.recv()接收響應(yīng)。處理多個客戶端可通過1.線程:每次連接啟動新線程;2.異步I/O:如asyncio庫實現(xiàn)無阻塞通信。注意事

Python類中的多態(tài)性 Python類中的多態(tài)性 Jul 05, 2025 am 02:58 AM

多態(tài)是Python面向?qū)ο缶幊讨械暮诵母拍睿浮耙环N接口,多種實現(xiàn)”,允許統(tǒng)一處理不同類型的對象。 1.多態(tài)通過方法重寫實現(xiàn),子類可重新定義父類方法,如Animal類的speak()方法在Dog和Cat子類中有不同實現(xiàn)。 2.多態(tài)的實際用途包括簡化代碼結(jié)構(gòu)、增強可擴展性,例如圖形繪製程序中統(tǒng)一調(diào)用draw()方法,或遊戲開發(fā)中處理不同角色的共同行為。 3.Python實現(xiàn)多態(tài)需滿足:父類定義方法,子類重寫該方法,但不要求繼承同一父類,只要對象實現(xiàn)相同方法即可,這稱為“鴨子類型”。 4.注意事項包括保持方

如何在Python中切片列表? 如何在Python中切片列表? Jun 20, 2025 am 12:51 AM

Python列表切片的核心答案是掌握[start:end:step]語法並理解其行為。 1.列表切片的基本格式為list[start:end:step],其中start是起始索引(包含)、end是結(jié)束索引(不包含)、step是步長;2.省略start默認從0開始,省略end默認到末尾,省略step默認為1;3.獲取前n項用my_list[:n],獲取後n項用my_list[-n:];4.使用step可跳過元素,如my_list[::2]取偶數(shù)位,負step值可反轉(zhuǎn)列表;5.常見誤區(qū)包括end索引不

See all articles