functools.wraps在Python裝飾器中不僅保留函數(shù)名稱和文檔字符串,還支持保留函數(shù)簽名以提升工具支持、正確追蹤多層裝飾器中的原始函數(shù)、簡(jiǎn)化調(diào)試流程,並允許自定義屬性複制。 1. 使用wraps可保留完整函數(shù)簽名,使IDE、linters和文檔生成工具更準(zhǔn)確識(shí)別裝飾後的函數(shù);2. 在堆疊多個(gè)裝飾器時(shí),仍能通過(guò)__name__正確識(shí)別原始函數(shù),方便日誌記錄與調(diào)試;3. 調(diào)試時(shí)顯示正確的函數(shù)名和模塊信息,避免錯(cuò)誤追蹤困難;4. 可通過(guò)assigned參數(shù)自定義需複制的屬性,如僅複製__name__和__doc__,適用於特殊場(chǎng)景??傊?,wraps在復(fù)雜場(chǎng)景中確保代碼正常運(yùn)行並提高可維護(hù)性。
When you're working with decorators in Python, functools.wraps
is more than just a helper to preserve a function's name and docstring. While that's its most obvious benefit, there are some more advanced ways to put functools.wraps
to work — especially when writing complex or reusable decorator patterns.
Here's how you can go beyond the basics.
1. Preserving Function Signatures for Better Tooling Support
One of the less-talked-about but highly practical uses of functools.wraps
is preserving the full function signature. This helps tools like IDEs, linters, and documentation generators understand your decorated functions better.
For example, if you write a decorator that wraps a function without using wraps
, the wrapper will show up as taking *args, **kwargs
, which makes autocomplete and tooltips less useful.
from functools import wraps def my_decorator(f): @wraps(f) def wrapper(*args, **kwargs): return f(*args, **kwargs) return wrapper
By using wraps
, the original function's signature (including parameter names, defaults, and annotations) gets copied over to the wrapper. This makes debugging and tool support much smoother, especially in larger codebases or libraries.
2. Chaining Decorators Without Losing Track of the Original Function
When you stack multiple decorators on a function, it can get tricky to know what the "real" function is underneath all the layers. functools.wraps
helps keep track of the original function by updating each wrapper's attributes along the chain.
Let's say you have two decorators:
from functools import wraps def debug(f): @wraps(f) def wrapper(*args, **kwargs): print(f"Calling {f.__name__}") return f(*args, **kwargs) return wrapper def timer(f): @wraps(f) def wrapper(*args, **kwargs): start = time.time() result = f(*args, **kwargs) print(f"Time taken: {time.time() - start:.4f}s") return result return wrapper
Now, if you apply both:
@debug @timer def my_function(x, y): return xy
Even after stacking, my_function.__name__
still shows 'my_function'
, not 'wrapper'
. That makes logging, introspection, and testing easier — especially when debugging why something isn't behaving as expected.
3. Using Wraps to Make Debugging Easier
Without wraps
, every decorated function looks like a wrapper, which makes debugging harder. For instance, if you hit an error deep inside a decorated function and look at the traceback, you might see something like this:
File "example.py", line 10, in wrapper
But if you use wraps
, the traceback will correctly show the original function name and module, making it easier to locate the issue.
Also, if you're inspecting objects at runtime (eg, for serialization, API generation, or dynamic routing), having the correct __name__
, __module__
, and __doc__
makes a big difference.
A few key things wraps
updates:
-
__name__
: So the function appears with its real name. -
__doc__
: Keeps the original docstring visible. -
__module__
: Helps with locating where the function was defined. - Other special attributes used by introspection tools.
4. Customizing What Gets Wrapped
While wraps
copies a standard set of attributes, you can also customize which attributes you want to update by using the optional assigned
and updated
parameters.
from functools import WRAPPER_ASSIGNMENTS, wraps # Only copy name and docstring wraps(f, assigned=('__name__', '__doc__'))
This can be handy in edge cases where you want to avoid copying certain attributes (like __annotations__
) or need to handle them differently.
Just note: Most of the time, sticking with the default behavior is best unless you have a specific reason to change it.
So while functools.wraps
seems simple on the surface, it quietly enables a lot of powerful behavior behind the scenes. It's not just about making your code look right — it helps make your code work right in more complex scenarios.
And honestly, once you start building reusable decorators or working in a team setting, skipping wraps
becomes a pain point pretty fast. So yeah, just always use it — it's worth it.
以上是python的functool.s撰寫裝飾師的一些高級(jí)用途是什麼?的詳細(xì)內(nèi)容。更多資訊請(qǐng)關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

熱AI工具

Undress AI Tool
免費(fèi)脫衣圖片

Undresser.AI Undress
人工智慧驅(qū)動(dòng)的應(yīng)用程序,用於創(chuàng)建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費(fèi)的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費(fèi)的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強(qiáng)大的PHP整合開(kāi)發(fā)環(huán)境

Dreamweaver CS6
視覺(jué)化網(wǎng)頁(yè)開(kāi)發(fā)工具

SublimeText3 Mac版
神級(jí)程式碼編輯軟體(SublimeText3)

用戶語(yǔ)音輸入通過(guò)前端JavaScript的MediaRecorderAPI捕獲並發(fā)送至PHP後端;2.PHP將音頻保存為臨時(shí)文件後調(diào)用STTAPI(如Google或百度語(yǔ)音識(shí)別)轉(zhuǎn)換為文本;3.PHP將文本發(fā)送至AI服務(wù)(如OpenAIGPT)獲取智能回復(fù);4.PHP再調(diào)用TTSAPI(如百度或Google語(yǔ)音合成)將回復(fù)轉(zhuǎn)為語(yǔ)音文件;5.PHP將語(yǔ)音文件流式返回前端播放,完成交互。整個(gè)流程由PHP主導(dǎo)數(shù)據(jù)流轉(zhuǎn)與錯(cuò)誤處理,確保各環(huán)節(jié)無(wú)縫銜接。

要實(shí)現(xiàn)PHP結(jié)合AI進(jìn)行文本糾錯(cuò)與語(yǔ)法優(yōu)化,需按以下步驟操作:1.選擇適合的AI模型或API,如百度、騰訊API或開(kāi)源NLP庫(kù);2.通過(guò)PHP的curl或Guzzle調(diào)用API並處理返回結(jié)果;3.在應(yīng)用中展示糾錯(cuò)信息並允許用戶選擇是否採(cǎi)納;4.使用php-l和PHP_CodeSniffer進(jìn)行語(yǔ)法檢測(cè)與代碼優(yōu)化;5.持續(xù)收集反饋並更新模型或規(guī)則以提升效果。選擇AIAPI時(shí)應(yīng)重點(diǎn)評(píng)估準(zhǔn)確率、響應(yīng)速度、價(jià)格及對(duì)PHP的支持。代碼優(yōu)化應(yīng)遵循PSR規(guī)範(fàn)、合理使用緩存、避免循環(huán)查詢、定期審查代碼,並藉助X

使用Seaborn的jointplot可快速可視化兩個(gè)變量間的關(guān)係及各自分佈;2.基礎(chǔ)散點(diǎn)圖通過(guò)sns.jointplot(data=tips,x="total_bill",y="tip",kind="scatter")實(shí)現(xiàn),中心為散點(diǎn)圖,上下和右側(cè)顯示直方圖;3.添加回歸線和密度信息可用kind="reg",並結(jié)合marginal_kws設(shè)置邊緣圖樣式;4.數(shù)據(jù)量大時(shí)推薦kind="hex",用

要將AI情感計(jì)算技術(shù)融入PHP應(yīng)用,核心是利用雲(yún)服務(wù)AIAPI(如Google、AWS、Azure)進(jìn)行情感分析,通過(guò)HTTP請(qǐng)求發(fā)送文本並解析返回的JSON結(jié)果,將情感數(shù)據(jù)存入數(shù)據(jù)庫(kù),從而實(shí)現(xiàn)用戶反饋的自動(dòng)化處理與數(shù)據(jù)洞察。具體步驟包括:1.選擇適合的AI情感分析API,綜合考慮準(zhǔn)確性、成本、語(yǔ)言支持和集成複雜度;2.使用Guzzle或curl發(fā)送請(qǐng)求,存儲(chǔ)情感分?jǐn)?shù)、標(biāo)籤及強(qiáng)度等信息;3.構(gòu)建可視化儀錶盤,支持優(yōu)先級(jí)排序、趨勢(shì)分析、產(chǎn)品迭代方向和用戶細(xì)分;4.應(yīng)對(duì)技術(shù)挑戰(zhàn),如API調(diào)用限制、數(shù)

字符串列表可用join()方法合併,如''.join(words)得到"HelloworldfromPython";2.數(shù)字列表需先用map(str,numbers)或[str(x)forxinnumbers]轉(zhuǎn)為字符串後才能join;3.任意類型列表可直接用str()轉(zhuǎn)換為帶括號(hào)和引號(hào)的字符串,適用於調(diào)試;4.自定義格式可用生成器表達(dá)式結(jié)合join()實(shí)現(xiàn),如'|'.join(f"[{item}]"foriteminitems)輸出"[a]|[

安裝pyodbc:使用pipinstallpyodbc命令安裝庫(kù);2.連接SQLServer:通過(guò)pyodbc.connect()方法,使用包含DRIVER、SERVER、DATABASE、UID/PWD或Trusted_Connection的連接字符串,分別支持SQL身份驗(yàn)證或Windows身份驗(yàn)證;3.查看已安裝驅(qū)動(dòng):運(yùn)行pyodbc.drivers()並篩選含'SQLServer'的驅(qū)動(dòng)名,確保使用如'ODBCDriver17forSQLServer'等正確驅(qū)動(dòng)名稱;4.連接字符串關(guān)鍵參數(shù)

pandas.melt()用於將寬格式數(shù)據(jù)轉(zhuǎn)為長(zhǎng)格式,答案是通過(guò)指定id_vars保留標(biāo)識(shí)列、value_vars選擇需融化的列、var_name和value_name定義新列名,1.id_vars='Name'表示Name列不變,2.value_vars=['Math','English','Science']指定要融化的列,3.var_name='Subject'設(shè)置原列名的新列名,4.value_name='Score'設(shè)置原值的新列名,最終生成包含Name、Subject和Score三列

pythoncanbeoptimizedFormized-formemory-boundoperationsbyreducingOverHeadThroughGenerator,有效dattratsures,andManagingObjectLifetimes.first,useGeneratorSInsteadoFlistSteadoflistSteadoFocessLargedAtasetSoneItematatime,desceedingingLoadeGingloadInterveringerverneDraineNterveingerverneDraineNterveInterveIntMory.second.second.second.second,Choos,Choos
