国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

目錄
Single Responsibility Principle (SRP)
Open/Closed Principle (OCP)
Liskov Substitution Principle (LSP)
Interface Segregation Principle (ISP)
Dependency Inversion Principle (DIP)
首頁 後端開發(fā) Python教學(xué) 什麼是可靠的設(shè)計原則,它們?nèi)绾芜m用於Python開發(fā)?

什麼是可靠的設(shè)計原則,它們?nèi)绾芜m用於Python開發(fā)?

Jun 25, 2025 am 12:50 AM
python開發(fā)

SOLID原則是面向?qū)ο缶幊讨杏渺短嵘浖O(shè)計可讀性、靈活性和可維護(hù)性的五個設(shè)計原則,在Python開發(fā)中同樣適用。 1. 單一職責(zé)原則(SRP)要求一個類只做一件事,避免將不相關(guān)的功能放在同一個類中,可通過拆分邏輯或使用輔助模塊實現(xiàn);2. 開放封閉原則(OCP)強(qiáng)調(diào)對擴(kuò)展開放、對修改關(guān)閉,通過繼承或組合來擴(kuò)展功能而不改動已有代碼;3. 里氏替換原則(LSP)確保子類可以替換父類而不破壞程序行為,需保持方法契約一致,避免重寫時引入異?;虿煌祷仡愋停?. 接口隔離原則(ISP)主張定義細(xì)粒接口,使客戶端僅依賴所需功能,Python可通過抽象基類或Mixins實現(xiàn);5. 依賴倒置原則(DIP)提倡高層與低層模塊都依賴於抽象,Python中常用依賴注入來實現(xiàn)解耦,便於測試和替換實現(xiàn)。這些原則幫助開發(fā)者構(gòu)建更清晰、易維護(hù)的系統(tǒng)結(jié)構(gòu)。

What is the SOLID design principles, and how do they apply to Python development?

SOLID principles are a set of five design principles intended to make software designs more understandable, flexible, and maintainable. They were introduced by Robert C. Martin (also known as Uncle Bob) and are especially useful in object-oriented programming. In Python development, applying these principles helps developers write cleaner, scalable, and easier-to-maintain code.


Single Responsibility Principle (SRP)

A class should have only one reason to change — meaning it should do one thing and do it well.

In practice, this means breaking down complex logic into separate components. For example, if you're writing a class that handles both user authentication and logging, it's violating SRP. Instead, split those responsibilities into two classes: one for authentication logic and another for logging behavior.

Why it matters in Python:
Python encourages modular and readable code. Keeping your classes focused makes debugging easier and reduces side effects when changes occur.

  • Avoid putting unrelated functions inside the same class.
  • If a class starts handling multiple tasks, consider splitting it up.
  • Use helper modules or utility functions instead of overloading a single class.

Open/Closed Principle (OCP)

Software entities (like classes, modules, functions) should be open for extension but closed for modification.

This means that once a class is working and tested, you shouldn't need to change its source code every time a new feature comes along. Instead, extend it through inheritance or composition.

Example in Python:
Let's say you have a PaymentProcessor class. Instead of modifying it each time you add a new payment method, create an abstract base class or interface like PaymentMethod , then implement subclasses such as CreditCardPayment , PayPalPayment , etc.

 class PaymentProcessor:
    def __init__(self, method: PaymentMethod):
        self.method = method

    def process(self):
        self.method.process()
  • Use polymorphism to allow different behaviors without changing existing code.
  • Abstract base classes ( abc module) can help enforce this pattern.
  • This makes your system more adaptable to future features.

Liskov Substitution Principle (LSP)

Objects of a superclass should be replaceable with objects of a subclass without breaking the application.

This principle ensures that a child class doesn't break the expected behavior of the parent class. In Python, since it's dynamically typed, this principle helps avoid confusing bugs caused by unexpected overrides.

What to watch out for: If a subclass throws an exception or returns a completely different type than the parent method, it might violate LSP.

For example, if you have a Rectangle class with a set_width() and set_height() method, and a Square class inherits from it but overrides those methods to keep width and height equal, using Square where Rectangle is expected could lead to unexpected behavior.

  • Ensure overridden methods maintain the same contract.
  • Don't force subclasses to throw exceptions for methods they don't support.
  • Think carefully about how inheritance affects expectations.

Interface Segregation Principle (ISP)

Clients shouldn't be forced to depend on interfaces they don't use.

Instead of having one large interface with many methods, define smaller, more specific ones so that classes only need to implement what they actually use.

How it applies in Python:
Since Python doesn't have interfaces per se (but has abstract base classes), you can still follow ISP by creating small, focused base classes or mixins.

For instance, instead of having a Worker interface with work() , eat() , and rest() , separate them into Workable , Eatable , and Restable . Then, a robot can implement only Workable , while a human implements all three.

  • Split large abstract classes into smaller ones.
  • Mixins can be used effectively to combine functionality.
  • Helps prevent unnecessary implementation and keeps dependencies clean.

Dependency Inversion Principle (DIP)

High-level modules shouldn't depend on low-level modules. Both should depend on abstractions. Also, abstractions shouldn't depend on details; details should depend on abstractions.

This allows for loosely coupled systems. In Python, this often means coding against interfaces or abstract classes rather than concrete implementations.

Practical approach: Use dependency injection to pass required components rather than hardcoding them inside a class.

For example, instead of directly instantiating a database connection inside a service class, inject a database adapter that follows a common interface.

 class UserService:
    def __init__(self, db: Database):
        self.db = db
  • Use dependency injection to reduce coupling.
  • Define behaviors through abstract classes or protocols.
  • Makes testing easier — just swap in a mock version during tests.

Applying SOLID principles in Python isn't about strict rule-following but about making thoughtful design choices. These ideas help structure your code in ways that anticipate change and reduce complexity.

It might feel like extra work at first, especially in smaller projects, but the payoff becomes clear as your codebase grows. And honestly, some of these principles blend naturally into Python's clean syntax and dynamic nature — you might already be doing parts of them without realizing it.

基本上就這些。

以上是什麼是可靠的設(shè)計原則,它們?nèi)绾芜m用於Python開發(fā)?的詳細(xì)內(nèi)容。更多資訊請關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

本網(wǎng)站聲明
本文內(nèi)容由網(wǎng)友自願投稿,版權(quán)歸原作者所有。本站不承擔(dān)相應(yīng)的法律責(zé)任。如發(fā)現(xiàn)涉嫌抄襲或侵權(quán)的內(nèi)容,請聯(lián)絡(luò)admin@php.cn

熱AI工具

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅(qū)動的應(yīng)用程序,用於創(chuàng)建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強(qiáng)大的PHP整合開發(fā)環(huán)境

Dreamweaver CS6

Dreamweaver CS6

視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

Python開發(fā)經(jīng)驗分享:如何進(jìn)行版本控制與發(fā)布管理 Python開發(fā)經(jīng)驗分享:如何進(jìn)行版本控制與發(fā)布管理 Nov 23, 2023 am 08:36 AM

Python開發(fā)經(jīng)驗分享:如何進(jìn)行版本控制和發(fā)布管理引言:在Python開發(fā)過程中,版本控制和發(fā)布管理是非常重要的環(huán)節(jié)。透過版本控制,我們可以輕鬆追蹤程式碼的變更、協(xié)同開發(fā)、解決衝突等;而發(fā)布管理則能夠幫助我們組織程式碼的部署、測試和發(fā)布流程,確保程式碼的品質(zhì)和穩(wěn)定性。本文將從版本控制和發(fā)布管理兩個方面,分享一些Python開發(fā)中的經(jīng)驗和實踐。一、版本控製版本控

Python開發(fā)建議:掌握並應(yīng)用物件導(dǎo)向程式設(shè)計的原則 Python開發(fā)建議:掌握並應(yīng)用物件導(dǎo)向程式設(shè)計的原則 Nov 22, 2023 pm 07:59 PM

Python是一門強(qiáng)大而靈活的程式語言,廣泛應(yīng)用於各種領(lǐng)域的軟體開發(fā)。在Python開發(fā)過程中,掌握並應(yīng)用物件導(dǎo)向程式設(shè)計(Object-OrientedProgramming,OOP)的原則是非常重要的。本文將介紹一些關(guān)鍵的Python開發(fā)建議,幫助開發(fā)者更能掌握並應(yīng)用物件導(dǎo)向程式設(shè)計的原則。首先,物件導(dǎo)向程式設(shè)計的核心思想是將問題劃分為一系列的對象,並透過對象之

Python開發(fā)注意事項:避免常見的記憶體洩漏問題 Python開發(fā)注意事項:避免常見的記憶體洩漏問題 Nov 22, 2023 pm 01:43 PM

Python作為一種高級程式語言,具有易學(xué)易用和開發(fā)效率高等優(yōu)點,在開發(fā)人員中越來越受歡迎。但是,由於其垃圾回收機(jī)制的實現(xiàn)方式,Python在處理大量記憶體時,容易出現(xiàn)記憶體洩漏問題。本文將從常見記憶體洩漏問題、造成問題的原因以及避免記憶體洩漏的方法三個方面來介紹Python開發(fā)過程中需要注意的事項。一、常見記憶體洩漏問題記憶體洩漏是指程式在運作中分配的記憶體空間無法釋放

Python開發(fā)經(jīng)驗分享:如何進(jìn)行程式碼審查和品質(zhì)保證 Python開發(fā)經(jīng)驗分享:如何進(jìn)行程式碼審查和品質(zhì)保證 Nov 22, 2023 am 08:18 AM

Python開發(fā)經(jīng)驗分享:如何進(jìn)行程式碼審查和品質(zhì)保證導(dǎo)言:在軟體開發(fā)過程中,程式碼審查和品質(zhì)保證是至關(guān)重要的環(huán)節(jié)。良好的程式碼審查可以提高程式碼品質(zhì)、減少錯誤和缺陷,提高程式的可維護(hù)性和可擴(kuò)展性。本文將從以下幾個方面分享Python開發(fā)中如何進(jìn)行程式碼審查和品質(zhì)保證的經(jīng)驗。一、制定代碼審查規(guī)範(fàn)代碼審查是一種系統(tǒng)性的活動,需要對代碼進(jìn)行全面的檢查和評估。為了規(guī)範(fàn)代碼審

Python開發(fā)建議:合理規(guī)劃專案架構(gòu)與模組劃分 Python開發(fā)建議:合理規(guī)劃專案架構(gòu)與模組劃分 Nov 22, 2023 pm 07:52 PM

Python開發(fā)是一種簡單而又強(qiáng)大的程式語言,常被用來開發(fā)各種類型的應(yīng)用程式。然而,對於初學(xué)者來說,可能會在專案結(jié)構(gòu)和模組劃分方面遇到一些挑戰(zhàn)。一個良好的專案結(jié)構(gòu)和模組劃分不僅有助於提高程式碼的可維護(hù)性和可擴(kuò)展性,還能提升團(tuán)隊開發(fā)的效率。在本文中,我們將分享一些建議,幫助您合理規(guī)劃Python專案的結(jié)構(gòu)和模組劃分。首先,一個好的專案結(jié)構(gòu)應(yīng)能清楚地展示專案的

Python開發(fā)更順暢:國內(nèi)源下的pip安裝教程 Python開發(fā)更順暢:國內(nèi)源下的pip安裝教程 Jan 17, 2024 am 09:54 AM

pip國內(nèi)源安裝教學(xué):讓你的Python開發(fā)更順暢,需要具體程式碼範(fàn)例在Python開發(fā)中,使用pip來管理第三方函式庫是非常常見的。然而,由於眾所周知的原因,有時直接使用官方的pip來源會遇到下載速度慢、無法連線等問題。為了解決這個問題,國內(nèi)出現(xiàn)了一些優(yōu)秀的pip國內(nèi)源,如阿里雲(yún)、騰訊雲(yún)、豆瓣等。使用這些國內(nèi)來源,可以大幅提高下載速度,提升Python開發(fā)的效率

Python開發(fā)經(jīng)驗總結(jié):提高程式碼安全性和防禦性的方法 Python開發(fā)經(jīng)驗總結(jié):提高程式碼安全性和防禦性的方法 Nov 23, 2023 am 09:35 AM

Python開發(fā)經(jīng)驗總結(jié):提高程式碼安全性和防禦性的方法隨著網(wǎng)路的發(fā)展,程式碼的安全性和防禦性越來越受到關(guān)注。特別是Python作為一門廣泛使用的動態(tài)語言,也面臨各種潛在的風(fēng)險。本文將總結(jié)一些提高Python程式碼安全性和防禦性的方法,希望對Python開發(fā)者有所幫助。合理使用輸入驗證在開發(fā)過程中,使用者的輸入可能包含惡意程式碼。為了避免這種情況發(fā)生,開發(fā)者應(yīng)該對

輕鬆安裝PyCharm,無需煩惱的Python開發(fā) 輕鬆安裝PyCharm,無需煩惱的Python開發(fā) Feb 03, 2024 am 08:10 AM

無痛安裝PyCharm,讓你的Python開發(fā)更輕鬆地隨著Python的流行,越來越多的開發(fā)者選擇使用PyCharm作為他們的開發(fā)環(huán)境。 PyCharm提供了許多強(qiáng)大的功能,能夠幫助開發(fā)者更輕鬆地編寫、偵錯和運行Python程式碼。本文將向大家介紹如何無痛地安裝PyCharm,並提供一些使用範(fàn)例,幫助讀者快速上手。第一步:下載PyCharm安裝包首先,我們需要從官

See all articles