Sorting is a necessary concept we need to learn in any programming language. Mostly sorting is done on arrays involving numbers and is a stepping stones to mastering the art of techniques to traversing and accessing data from arrays.
The type of sorting technique we are going to talk about in today's article will Bubble Sort.
Bubble Sort
Bubble sorting is a simple sorting algorithm that works by repeatedly swapping adjacent elements if they are in wrong order. This method of sorting an array is not suitable for large data sets as the time complexity for average and worst case scenarios is very high.
Algorithm of Bubble Sort :
- Bubble Sort organizes an array by sorting it in multiple passes.
- First Pass: The largest element moves to the last position, its correct place.
- Second Pass: The second-largest element moves to the second-to-last position, and this continues for subsequent passes.
- With each pass, only the unsorted portion of the array is processed.
- After k passes, the largest k elements are in their correct positions in the last k slots.
- During each pass:
- Compare adjacent elements in the unsorted section.
- Swap the elements if the larger one appears before the smaller one.
- By the end of the pass, the largest unsorted element moves to its correct position. This process repeats until the entire array is sorted.
How Does Bubble Sort Work ?
Below is the implementation of the bubble sort. It can be optimized by stopping the algorithm if the inner loop didn’t cause any swap.
// Easy implementation of Bubble sort #include <stdio.h> int main(){ int i, j, size, temp, count=0, a[100]; //Asking the user for size of array printf("Enter the size of array you want to enter = \t"); scanf("%d", &size); //taking the input array through loop for (i=0;i<size;i++){ printf("Enter the %dth element",i); scanf("%d",&a[i]); } //printing the unsorted list printf("The list you entered is : \n"); for (i=0;i<size;i++){ printf("%d,\t",a[i]); } //sorting the list for (i = 0; i < size - 1; i++) { count = 1; for (j = 0; j < size - i - 1; j++) { if (a[j] > a[j + 1]) { //swapping elements temp=a[j]; a[j]=a[j+1]; a[j+1]=temp; count = 1; } } // If no two elements were swapped by inner loop, // then break if (count == 1) break; } // printing the sorted list printf("\nThe sorted list is : \n"); for (i=0;i<size;i++){ printf("%d,\t",a[i]); } return 0; }
Output :
**
Complexity Analysis of Bubble Sort:
Time Complexity: O(n2)
Auxiliary Space: O(1)
Advantages of Bubble Sort:
- Bubble sort is easy to understand and implement.
- It does not require any additional memory space.
- It is a stable sorting algorithm, meaning that elements with the same key value maintain their relative order in the sorted output.
Disadvantages of Bubble Sort:
- Bubble sort has a time complexity of O(n2) which makes it very slow for large data sets.
- Bubble sort is a comparison-based sorting algorithm, which means that it requires a comparison operator to determine the relative order of elements in the input data set. It can limit the efficiency of the algorithm in certain cases.
Do comment if you have any queries !!
And all discussions will be appreciated :)
The above is the detailed content of Bubble Sort in C. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Yes, function overloading is a polymorphic form in C, specifically compile-time polymorphism. 1. Function overload allows multiple functions with the same name but different parameter lists. 2. The compiler decides which function to call at compile time based on the provided parameters. 3. Unlike runtime polymorphism, function overloading has no extra overhead at runtime, and is simple to implement but less flexible.

C has two main polymorphic types: compile-time polymorphism and run-time polymorphism. 1. Compilation-time polymorphism is implemented through function overloading and templates, providing high efficiency but may lead to code bloating. 2. Runtime polymorphism is implemented through virtual functions and inheritance, providing flexibility but performance overhead.

Yes, polymorphisms in C are very useful. 1) It provides flexibility to allow easy addition of new types; 2) promotes code reuse and reduces duplication; 3) simplifies maintenance, making the code easier to expand and adapt to changes. Despite performance and memory management challenges, its advantages are particularly significant in complex systems.

C destructorscanleadtoseveralcommonerrors.Toavoidthem:1)Preventdoubledeletionbysettingpointerstonullptrorusingsmartpointers.2)Handleexceptionsindestructorsbycatchingandloggingthem.3)Usevirtualdestructorsinbaseclassesforproperpolymorphicdestruction.4

Polymorphisms in C are divided into runtime polymorphisms and compile-time polymorphisms. 1. Runtime polymorphism is implemented through virtual functions, allowing the correct method to be called dynamically at runtime. 2. Compilation-time polymorphism is implemented through function overloading and templates, providing higher performance and flexibility.

People who study Python transfer to C The most direct confusion is: Why can't you write like Python? Because C, although the syntax is more complex, provides underlying control capabilities and performance advantages. 1. In terms of syntax structure, C uses curly braces {} instead of indentation to organize code blocks, and variable types must be explicitly declared; 2. In terms of type system and memory management, C does not have an automatic garbage collection mechanism, and needs to manually manage memory and pay attention to releasing resources. RAII technology can assist resource management; 3. In functions and class definitions, C needs to explicitly access modifiers, constructors and destructors, and supports advanced functions such as operator overloading; 4. In terms of standard libraries, STL provides powerful containers and algorithms, but needs to adapt to generic programming ideas; 5

C polymorphismincludescompile-time,runtime,andtemplatepolymorphism.1)Compile-timepolymorphismusesfunctionandoperatoroverloadingforefficiency.2)Runtimepolymorphismemploysvirtualfunctionsforflexibility.3)Templatepolymorphismenablesgenericprogrammingfo

C polymorphismisuniqueduetoitscombinationofcompile-timeandruntimepolymorphism,allowingforbothefficiencyandflexibility.Toharnessitspowerstylishly:1)Usesmartpointerslikestd::unique_ptrformemorymanagement,2)Ensurebaseclasseshavevirtualdestructors,3)Emp
