国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

目錄
Loading and Inspecting Your Data
Cleaning and Preparing the Data
Filtering, Sorting, and Transforming Data
Visualizing Insights Quickly
首頁 后端開發(fā) Python教程 使用Python Pandas數(shù)據(jù)框進(jìn)行數(shù)據(jù)分析

使用Python Pandas數(shù)據(jù)框進(jìn)行數(shù)據(jù)分析

Jul 05, 2025 am 02:27 AM

Python的Pandas庫是數(shù)據(jù)分析的強(qiáng)大工具,其核心結(jié)構(gòu)為DataFrame。1.首先加載數(shù)據(jù)到DataFrame并檢查結(jié)構(gòu);2.清理數(shù)據(jù),處理缺失值和修正數(shù)據(jù)類型;3.過濾、排序及轉(zhuǎn)換數(shù)據(jù)以提取信息;4.通過分組聚合分析趨勢;5.利用可視化庫快速生成圖表。這些步驟構(gòu)成使用Pandas進(jìn)行數(shù)據(jù)分析的基礎(chǔ)流程。

Performing Data Analysis Using Python Pandas DataFrames

When it comes to data analysis, Python’s Pandas library is one of the most powerful tools available. At the heart of Pandas lies the DataFrame — a two-dimensional, size-mutable, and potentially heterogeneous tabular data structure. With DataFrames, you can load, clean, transform, and analyze data efficiently. Here's how to get started with performing data analysis using Pandas DataFrames.

Performing Data Analysis Using Python Pandas DataFrames

Loading and Inspecting Your Data

Before diving into analysis, you need to load your data into a DataFrame. Most commonly, this is done from CSV files, Excel sheets, or databases.

Performing Data Analysis Using Python Pandas DataFrames
import pandas as pd
df = pd.read_csv('data.csv')

Once loaded, take a quick look at the first few rows:

print(df.head())

This helps you understand the structure — what columns are present, what kind of data they contain, and whether there are obvious issues like missing values or incorrect formats.

Performing Data Analysis Using Python Pandas DataFrames

Useful inspection methods:

  • df.info() – gives a summary including data types and non-null counts
  • df.describe() – shows basic statistical info for numerical columns
  • df.shape – tells you how many rows and columns you have

These help you assess data quality and decide on next steps like cleaning or filtering.


Cleaning and Preparing the Data

Real-world datasets often come with imperfections. Missing values, inconsistent formatting, or incorrect entries can skew your results.

To check for missing values:

print(df.isnull().sum())

Depending on the context, you can either drop rows/columns with missing data or fill them in:

  • df.dropna() – removes rows with missing values
  • df.fillna(0) – fills missing values with 0 (or any other value)
  • df.interpolate() – fills missing values using interpolation

Also, ensure that data types are correct. For example, a column meant to be numeric might be read as strings due to extra characters:

df['column_name'] = pd.to_numeric(df['column_name'], errors='coerce')

Renaming columns for clarity or consistency can also improve readability:

df.rename(columns={'old_name': 'new_name'}, inplace=True)

Filtering, Sorting, and Transforming Data

Once your data is clean, you can start slicing and dicing it based on your analysis needs.

Filtering lets you extract subsets of data:

filtered_data = df[df['sales'] > 1000]

You can also filter using multiple conditions:

df[(df['category'] == 'Electronics') & (df['sales'] > 500)]

Sorting helps organize data:

sorted_df = df.sort_values(by='sales', ascending=False)

For transformations, consider creating new calculated columns:

df['profit_margin'] = df['profit'] / df['revenue']

Grouping data by categories and aggregating values is another common step:

grouped = df.groupby('region')['sales'].sum()

These operations make it easier to spot trends and patterns.


Visualizing Insights Quickly

While not part of Pandas directly, integration with libraries like Matplotlib or Seaborn makes visual analysis straightforward.

A simple histogram:

df['sales'].plot(kind='hist', bins=20)

Or a bar chart showing total sales per region:

df.groupby('region')['sales'].sum().plot(kind='bar')

Visualization helps turn raw numbers into actionable insights.


Getting comfortable with these basic techniques will give you a solid foundation for performing data analysis using Pandas DataFrames. The key is to practice with real data and gradually build up your toolkit. There’s always more to learn, but these steps cover most day-to-day tasks.

以上是使用Python Pandas數(shù)據(jù)框進(jìn)行數(shù)據(jù)分析的詳細(xì)內(nèi)容。更多信息請關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

本站聲明
本文內(nèi)容由網(wǎng)友自發(fā)貢獻(xiàn),版權(quán)歸原作者所有,本站不承擔(dān)相應(yīng)法律責(zé)任。如您發(fā)現(xiàn)有涉嫌抄襲侵權(quán)的內(nèi)容,請聯(lián)系admin@php.cn

熱AI工具

Undress AI Tool

Undress AI Tool

免費脫衣服圖片

Undresser.AI Undress

Undresser.AI Undress

人工智能驅(qū)動的應(yīng)用程序,用于創(chuàng)建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用于從照片中去除衣服的在線人工智能工具。

Clothoff.io

Clothoff.io

AI脫衣機(jī)

Video Face Swap

Video Face Swap

使用我們完全免費的人工智能換臉工具輕松在任何視頻中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的代碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

功能強(qiáng)大的PHP集成開發(fā)環(huán)境

Dreamweaver CS6

Dreamweaver CS6

視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版

SublimeText3 Mac版

神級代碼編輯軟件(SublimeText3)

熱門話題

Laravel 教程
1600
29
PHP教程
1502
276
如何處理Python中的API身份驗證 如何處理Python中的API身份驗證 Jul 13, 2025 am 02:22 AM

處理API認(rèn)證的關(guān)鍵在于理解并正確使用認(rèn)證方式。1.APIKey是最簡單的認(rèn)證方式,通常放在請求頭或URL參數(shù)中;2.BasicAuth使用用戶名和密碼進(jìn)行Base64編碼傳輸,適合內(nèi)部系統(tǒng);3.OAuth2需先通過client_id和client_secret獲取Token,再在請求頭中帶上BearerToken;4.為應(yīng)對Token過期,可封裝Token管理類自動刷新Token;總之,根據(jù)文檔選擇合適方式,并安全存儲密鑰信息是關(guān)鍵。

解釋Python斷言。 解釋Python斷言。 Jul 07, 2025 am 12:14 AM

Assert是Python用于調(diào)試的斷言工具,當(dāng)條件不滿足時拋出AssertionError。其語法為assert條件加可選錯誤信息,適用于內(nèi)部邏輯驗證如參數(shù)檢查、狀態(tài)確認(rèn)等,但不能用于安全或用戶輸入檢查,且應(yīng)配合清晰提示信息使用,僅限開發(fā)階段輔助調(diào)試而非替代異常處理。

什么是Python型提示? 什么是Python型提示? Jul 07, 2025 am 02:55 AM

typeHintsInpyThonsolverbromblemboyofambiguityandPotentialBugSindyNamalytyCodeByallowingDevelopsosteSpecefectifyExpectedTypes.theyenhancereadability,enablellybugdetection,andimprovetool.typehintsupport.typehintsareadsareadsareadsareadsareadsareadsareadsareadsareaddedusidocolon(

如何一次迭代兩個列表 如何一次迭代兩個列表 Jul 09, 2025 am 01:13 AM

在Python中同時遍歷兩個列表的常用方法是使用zip()函數(shù),它會按順序配對多個列表并以最短為準(zhǔn);若列表長度不一致,可使用itertools.zip_longest()以最長為準(zhǔn)并填充缺失值;結(jié)合enumerate()可同時獲取索引。1.zip()簡潔實用,適合成對數(shù)據(jù)迭代;2.zip_longest()處理不一致長度時可填充默認(rèn)值;3.enumerate(zip())可在遍歷時獲取索引,滿足多種復(fù)雜場景需求。

什么是Python迭代器? 什么是Python迭代器? Jul 08, 2025 am 02:56 AM

Inpython,IteratorSareObjectSthallowloopingThroughCollectionsByImplementing_iter __()和__next __()。1)iteratorsWiaTheIteratorProtocol,使用__ITER __()toreTurnterateratoratoranteratoratoranteratoratorAnterAnteratoratorant antheittheext__()

Python Fastapi教程 Python Fastapi教程 Jul 12, 2025 am 02:42 AM

要使用Python創(chuàng)建現(xiàn)代高效的API,推薦使用FastAPI;其基于標(biāo)準(zhǔn)Python類型提示,可自動生成文檔,性能優(yōu)越。安裝FastAPI和ASGI服務(wù)器uvicorn后,即可編寫接口代碼。通過定義路由、編寫處理函數(shù)并返回數(shù)據(jù),可以快速構(gòu)建API。FastAPI支持多種HTTP方法,并提供自動生成的SwaggerUI和ReDoc文檔系統(tǒng)。URL參數(shù)可通過路徑定義捕獲,查詢參數(shù)則通過函數(shù)參數(shù)設(shè)置默認(rèn)值實現(xiàn)。合理使用Pydantic模型有助于提升開發(fā)效率和準(zhǔn)確性。

如何用Python測試API 如何用Python測試API Jul 12, 2025 am 02:47 AM

要測試API需使用Python的Requests庫,步驟為安裝庫、發(fā)送請求、驗證響應(yīng)、設(shè)置超時與重試。首先通過pipinstallrequests安裝庫;接著用requests.get()或requests.post()等方法發(fā)送GET或POST請求;然后檢查response.status_code和response.json()確保返回結(jié)果符合預(yù)期;最后可添加timeout參數(shù)設(shè)置超時時間,并結(jié)合retrying庫實現(xiàn)自動重試以增強(qiáng)穩(wěn)定性。

Python函數(shù)可變范圍 Python函數(shù)可變范圍 Jul 12, 2025 am 02:49 AM

在Python中,函數(shù)內(nèi)部定義的變量是局部變量,僅在函數(shù)內(nèi)有效;外部定義的是全局變量,可在任何地方讀取。1.局部變量隨函數(shù)執(zhí)行結(jié)束被銷毀;2.函數(shù)可訪問全局變量但不能直接修改,需用global關(guān)鍵字;3.嵌套函數(shù)中若要修改外層函數(shù)變量,需使用nonlocal關(guān)鍵字;4.同名變量在不同作用域互不影響;5.修改全局變量時必須聲明global,否則會引發(fā)UnboundLocalError錯誤。理解這些規(guī)則有助于避免bug并寫出更可靠的函數(shù)。

See all articles