


SK Hynix wird am 6. August neue KI-bezogene Produkte vorstellen: 12-Layer-HBM3E, 321-High-NAND usw.
Aug 01, 2024 pm 09:40 PMLaut Nachrichten dieser Website vom 1. August hat SK Hynix heute (1. August) einen Blogbeitrag ver?ffentlicht, in dem es seine Teilnahme am Global Semiconductor Memory Summit FMS 2024 ankündigt, der vom 6. bis 8. August in Santa Clara, Kalifornien, USA, stattfinden wird , um viele Produkte der neuen Generation zu demonstrieren.
Einführung in Future Memory and Storage
Früher bekannt als Flash Memory Summit, der vor allem für NAND-Anbieter gedacht war, wurde er dieses Jahr in Future Memory and Storage Summit umbenannt Memory and Storage), um weitere Teilnehmer wie DRAM- und Speicheranbieter einzuladen.
Neue Produkte
SK Hynix kündigte letztes Jahr auf der FMS-Veranstaltung die Entwicklung des branchenweit h?chsten 321-Layer-NAND an. In diesem Jahr werden auch viele neue Produkte im KI-Bereich vorgestellt, darunter 12-Layer-HBM3E (voraussichtlich). werden im dritten Quartal in Massenproduktion hergestellt) und 321-High-NAND (wird in der ersten H?lfte des n?chsten Jahres ausgeliefert). Im Anhang dieser Website sind die neuen Produkte aufgeführt, die SK Hynix in Kürze vorstellen wird:
SK hynix HBM Process Integration Director Unoh Kwon und SSD PMO Director Chunsung Kim werden eine Rede mit dem Titel ?AI Memory and Storage Solutions in the“ halten ?ra der künstlichen Intelligenz“ bei der Er?ffnungsfeier der Veranstaltung Keynote-Vortrag zum Thema Führung und Vision.
Die beiden Führungskr?fte werden die DRAM- und NAND-Produktportfolios des Unternehmens sowie für künstliche Intelligenz optimierte Speicherl?sungen mit künstlicher Intelligenz vorstellen.
Das obige ist der detaillierte Inhalt vonSK Hynix wird am 6. August neue KI-bezogene Produkte vorstellen: 12-Layer-HBM3E, 321-High-NAND usw.. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Hei?e KI -Werkzeuge

Undress AI Tool
Ausziehbilder kostenlos

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem v?llig kostenlosen KI-Gesichtstausch-Tool aus!

Hei?er Artikel

Hei?e Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Hei?e Themen

Laut Nachrichten dieser Website vom 24. Juni berichteten die koreanischen Medien BusinessKorea, dass Brancheninsider enthüllten, dass SK Hynix das neueste Forschungspapier zur 3D-DRAM-Technologie auf dem VLSI 2024 Summit ver?ffentlicht habe, der vom 16. bis 20. Juni in Hawaii, USA, stattfand. In diesem Artikel berichtet SK Hynix, dass die Ausbeute seines fünfschichtig gestapelten 3D-DRAM-Speichers 56,1 % erreicht hat und das 3D-DRAM im Experiment ?hnliche Eigenschaften wie aktuelle 2D-DRAMs aufweist. Berichten zufolge stapelt 3D-DRAM die Zellen im Gegensatz zu herk?mmlichem DRAM, bei dem die Speicherzellen horizontal angeordnet sind, vertikal, um eine h?here Dichte auf demselben Raum zu erreichen. Allerdings SK Hynix

Diese Seite berichtete am 27. Juni, dass Jianying eine von FaceMeng Technology, einer Tochtergesellschaft von ByteDance, entwickelte Videobearbeitungssoftware ist, die auf der Douyin-Plattform basiert und grunds?tzlich kurze Videoinhalte für Benutzer der Plattform produziert Windows, MacOS und andere Betriebssysteme. Jianying kündigte offiziell die Aktualisierung seines Mitgliedschaftssystems an und führte ein neues SVIP ein, das eine Vielzahl von KI-Schwarztechnologien umfasst, wie z. B. intelligente übersetzung, intelligente Hervorhebung, intelligente Verpackung, digitale menschliche Synthese usw. Preislich betr?gt die monatliche Gebühr für das Clipping von SVIP 79 Yuan, die Jahresgebühr 599 Yuan (Hinweis auf dieser Website: entspricht 49,9 Yuan pro Monat), das fortlaufende Monatsabonnement betr?gt 59 Yuan pro Monat und das fortlaufende Jahresabonnement betr?gt 499 Yuan pro Jahr (entspricht 41,6 Yuan pro Monat). Darüber hinaus erkl?rte der Cut-Beamte auch, dass diejenigen, die den ursprünglichen VIP abonniert haben, das Benutzererlebnis verbessern sollen

Verbessern Sie die Produktivit?t, Effizienz und Genauigkeit der Entwickler, indem Sie eine abrufgestützte Generierung und ein semantisches Ged?chtnis in KI-Codierungsassistenten integrieren. übersetzt aus EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, Autor JanakiramMSV. Obwohl grundlegende KI-Programmierassistenten natürlich hilfreich sind, k?nnen sie oft nicht die relevantesten und korrektesten Codevorschl?ge liefern, da sie auf einem allgemeinen Verst?ndnis der Softwaresprache und den g?ngigsten Mustern beim Schreiben von Software basieren. Der von diesen Coding-Assistenten generierte Code eignet sich zur L?sung der von ihnen zu l?senden Probleme, entspricht jedoch h?ufig nicht den Coding-Standards, -Konventionen und -Stilen der einzelnen Teams. Dabei entstehen h?ufig Vorschl?ge, die ge?ndert oder verfeinert werden müssen, damit der Code in die Anwendung übernommen wird

Large Language Models (LLMs) werden auf riesigen Textdatenbanken trainiert und erwerben dort gro?e Mengen an realem Wissen. Dieses Wissen wird in ihre Parameter eingebettet und kann dann bei Bedarf genutzt werden. Das Wissen über diese Modelle wird am Ende der Ausbildung ?verdinglicht“. Am Ende des Vortrainings h?rt das Modell tats?chlich auf zu lernen. Richten Sie das Modell aus oder verfeinern Sie es, um zu erfahren, wie Sie dieses Wissen nutzen und natürlicher auf Benutzerfragen reagieren k?nnen. Aber manchmal reicht Modellwissen nicht aus, und obwohl das Modell über RAG auf externe Inhalte zugreifen kann, wird es als vorteilhaft angesehen, das Modell durch Feinabstimmung an neue Dom?nen anzupassen. Diese Feinabstimmung erfolgt mithilfe von Eingaben menschlicher Annotatoren oder anderer LLM-Kreationen, wobei das Modell auf zus?tzliches Wissen aus der realen Welt trifft und dieses integriert

Um mehr über AIGC zu erfahren, besuchen Sie bitte: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou unterscheidet sich von der traditionellen Fragendatenbank, die überall im Internet zu sehen ist erfordert einen Blick über den Tellerrand hinaus. Large Language Models (LLMs) gewinnen in den Bereichen Datenwissenschaft, generative künstliche Intelligenz (GenAI) und künstliche Intelligenz zunehmend an Bedeutung. Diese komplexen Algorithmen verbessern die menschlichen F?higkeiten, treiben Effizienz und Innovation in vielen Branchen voran und werden zum Schlüssel für Unternehmen, um wettbewerbsf?hig zu bleiben. LLM hat ein breites Anwendungsspektrum und kann in Bereichen wie der Verarbeitung natürlicher Sprache, der Textgenerierung, der Spracherkennung und Empfehlungssystemen eingesetzt werden. Durch das Lernen aus gro?en Datenmengen ist LLM in der Lage, Text zu generieren

Maschinelles Lernen ist ein wichtiger Zweig der künstlichen Intelligenz, der Computern die M?glichkeit gibt, aus Daten zu lernen und ihre F?higkeiten zu verbessern, ohne explizit programmiert zu werden. Maschinelles Lernen hat ein breites Anwendungsspektrum in verschiedenen Bereichen, von der Bilderkennung und der Verarbeitung natürlicher Sprache bis hin zu Empfehlungssystemen und Betrugserkennung, und es ver?ndert unsere Lebensweise. Im Bereich des maschinellen Lernens gibt es viele verschiedene Methoden und Theorien, von denen die fünf einflussreichsten Methoden als ?Fünf Schulen des maschinellen Lernens“ bezeichnet werden. Die fünf Hauptschulen sind die symbolische Schule, die konnektionistische Schule, die evolution?re Schule, die Bayes'sche Schule und die Analogieschule. 1. Der Symbolismus, auch Symbolismus genannt, betont die Verwendung von Symbolen zum logischen Denken und zum Ausdruck von Wissen. Diese Denkrichtung glaubt, dass Lernen ein Prozess der umgekehrten Schlussfolgerung durch das Vorhandene ist

Herausgeber | Der Frage-Antwort-Datensatz (QA) von ScienceAI spielt eine entscheidende Rolle bei der F?rderung der Forschung zur Verarbeitung natürlicher Sprache (NLP). Hochwertige QS-Datens?tze k?nnen nicht nur zur Feinabstimmung von Modellen verwendet werden, sondern auch effektiv die F?higkeiten gro?er Sprachmodelle (LLMs) bewerten, insbesondere die F?higkeit, wissenschaftliche Erkenntnisse zu verstehen und zu begründen. Obwohl es derzeit viele wissenschaftliche QS-Datens?tze aus den Bereichen Medizin, Chemie, Biologie und anderen Bereichen gibt, weisen diese Datens?tze immer noch einige M?ngel auf. Erstens ist das Datenformular relativ einfach, die meisten davon sind Multiple-Choice-Fragen. Sie sind leicht auszuwerten, schr?nken jedoch den Antwortauswahlbereich des Modells ein und k?nnen die F?higkeit des Modells zur Beantwortung wissenschaftlicher Fragen nicht vollst?ndig testen. Im Gegensatz dazu offene Fragen und Antworten

Laut Nachrichten dieser Website vom 1. August hat SK Hynix heute (1. August) einen Blogbeitrag ver?ffentlicht, in dem es ankündigt, dass es am Global Semiconductor Memory Summit FMS2024 teilnehmen wird, der vom 6. bis 8. August in Santa Clara, Kalifornien, USA, stattfindet viele neue Technologien Generation Produkt. Einführung des Future Memory and Storage Summit (FutureMemoryandStorage), früher Flash Memory Summit (FlashMemorySummit), haupts?chlich für NAND-Anbieter, im Zusammenhang mit der zunehmenden Aufmerksamkeit für die Technologie der künstlichen Intelligenz wurde dieses Jahr in Future Memory and Storage Summit (FutureMemoryandStorage) umbenannt Laden Sie DRAM- und Speicheranbieter und viele weitere Akteure ein. Neues Produkt SK Hynix wurde letztes Jahr auf den Markt gebracht
