Diese Anleitung erkl?rt, wie man bei Verwendung der NewsDataHub-API durch die Ergebnisse paginiert.
NewsDataHub API ist ein Dienst, der Nachrichtendaten über eine RESTful-API-Schnittstelle bereitstellt. Es implementiert eine Cursor-basierte Paginierung, um gro?e Datenmengen effizient zu verarbeiten? und erm?glicht es Entwicklern, Nachrichtenartikel in überschaubaren Stapeln abzurufen. Jede Antwort umfasst eine Reihe von Artikeln, wobei jedes Artikelobjekt Details wie Titel, Beschreibung, Ver?ffentlichungsdatum, Quelle, Inhalt, Schlüsselw?rter, Themen und Stimmungsanalyse enth?lt. Die API verwendet einen Cursorparameter für die nahtlose Navigation durch die Ergebnisse? und bietet eine umfassende Dokumentation für erweiterte Funktionen wie Suchparameter und Filteroptionen?.
Dokumentation finden Sie unter: https://newsdatahub.com/docs
APIs geben in ihren Antworten normalerweise eine begrenzte Datenmenge zurück, da die Rückgabe aller Ergebnisse in einer einzigen Anfrage normalerweise unpraktisch ist. Stattdessen verwenden sie Paginierung – eine Technik, die Daten in separate Seiten oder Stapel aufteilt. Dadurch k?nnen Kunden jeweils eine Seite abrufen und auf eine überschaubare Teilmenge der Ergebnisse zugreifen.
Wenn Sie eine erste Anfrage an den /news-Endpunkt stellen und die ersten Ergebnisse erhalten, sieht die Form der Antwort wie folgt aus:
{ "next_cursor": "VW93MzoqpzM0MzgzMQpqwDAwMDQ5LjA6MzA0NTM0Mjk1T0xHag==", "total_results": 910310, "per_page": 10, "data": [ { "id": "4927167e-93f3-45d2-9c53-f1b8cdf2888f", "title": "Jail time for wage theft: New laws start January", "source_title": "Dynamic Business", "source_link": "https://dynamicbusiness.com", "article_link": "https://dynamicbusiness.com/topics/news/jail-time-for-wage-theft-new-laws-start-january.html", "keywords": [ "wage theft", "criminalisation of wage theft", "Australian businesses", "payroll errors", "underpayment laws" ], "topics": [ "law", "employment", "economy" ], "description": "Starting January 2025, deliberate wage theft will come with serious consequences for employers in Australia.", "pub_date": "2024-12-17T07:15:00", "creator": null, "content": "The criminalisation of wage theft from January 2025 will be a wake-up call for all Australian businesses. While deliberate underpayment has rightly drawn scrutiny, our research reveals that accidental payroll errors are alarmingly common, affecting nearly 60% of companies in the past two years. Matt Loop, VP and Head of Asia at Rippling Starting January 1, 2025, Australias workplace compliance landscape will change dramatically. Employers who deliberately underpay employees could face fines as high as AU. 25 million or up to 10 years in prison under new amendments to the Fair Work Act 2009 likely. Employers must act decisively to ensure compliance, as ignorance or unintentional errors wont shield them from civil or criminal consequences. Matt Loop, VP and Head of Asia at Rippling, says: The criminalisation of wage theft from January 2025 will be a wake-up call for all Australian businesses. While deliberate underpayment has rightly drawn scrutiny, our research reveals that accidental payroll errors are alarmingly common, affecting nearly 60% of companies in the past two years. Adding to the challenge, many SMEs still rely on fragmented, siloed systems to manage payroll. This not only complicates operations but significantly increases the risk of errors heightening the potential for non-compliance under the new laws. The urgency for businesses to modernise their approach cannot be overstated. Technology offers a practical solution, helping to streamline and automate processes, reduce human error, and ensure compliance. But this is about more than just avoiding penalties. Accurate and timely pay builds trust with employees, strengthens workplace morale, and fosters accountability. The message is clear: wage theft isnt just a financial risk anymoreits a criminal offense. Now is the time to ensure your business complies with Australias new workplace laws. Keep up to date with our stories on LinkedIn, Twitter, Facebook and Instagram.", "media_url": "https://backend.dynamicbusiness.com/wp-content/uploads/2024/12/db-3-4.jpg", "media_type": "image/jpeg", "media_description": null, "media_credit": null, "media_thumbnail": null, "language": "en", "sentiment": { "pos": 0.083, "neg": 0.12, "neu": 0.796 } }, // more article objects ] }
Beachten Sie die erste Eigenschaft in der JSON-Antwort – next_cursor. Der Wert in next_cursor zeigt auf den Anfang der n?chsten Ergebnisseite. Bei der n?chsten Anfrage geben Sie den Cursor-Abfrageparameter wie folgt an:
https://api.newsdatahub.com/v1/news?cursor=VW93MzoqpzM0MzgzMQpqwDAwMDQ5LjA6MzA0NTM0Mjk1T0xHag==
Der einfachste Weg, das Paginieren durch die Ergebnisse auszuprobieren, ist Postman oder ein ?hnliches Tool. Hier ist ein kurzes Video, das zeigt, wie man mit dem Cursorwert durch die Ergebnisse in Postman paginiert.
https://youtu.be/G7kkTwCPtCE
Wenn der next_cursor-Wert null ist, bedeutet dies, dass Sie das Ende der verfügbaren Ergebnisse für Ihre ausgew?hlten Kriterien erreicht haben.
Mit Python durch Ergebnisse paginieren
Hier erfahren Sie, wie Sie mit Python die grundlegende Paginierung über NewsDataHub-API-Ergebnisse einrichten.
import requests # Make sure to keep your API keys secure # Use environment variables instead of hardcoding API_KEY = 'your_api_key' BASE_URL = 'https://api.newsdatahub.com/v1/news' headers = { 'X-Api-Key': API_KEY, 'Accept': 'application/json', 'User-Agent': 'Mozilla/5.0 Chrome/83.0.4103.97 Safari/537.36' } params = {} cursor = None # Limit to 5 pages to avoid rate limiting while demonstrating pagination for _ in range(5): params['cursor'] = cursor try: response = requests.get(BASE_URL, headers=headers, params=params) response.raise_for_status() data = response.json() except (requests.HTTPError, ValueError) as e: print(f"There was an error when making the request: {e}") continue cursor = data.get('next_cursor') for article in data.get('data', []): print(article['title']) if cursor is None: print("No more results") break
Indexbasierte Paginierung
Einige APIs verwenden indexbasierte Paginierung, um Ergebnisse in diskrete Bl?cke aufzuteilen. Bei diesem Ansatz geben APIs eine bestimmte Seite mit Daten zurück – ?hnlich einem Inhaltsverzeichnis in einem Buch, bei dem jede Seitenzahl auf einen bestimmten Abschnitt verweist.
Die indexbasierte Paginierung ist zwar einfacher zu implementieren, weist jedoch mehrere Nachteile auf. Es gibt Probleme mit Aktualisierungen in Echtzeit, kann zu inkonsistenten Ergebnissen führen und belastet die Datenbank st?rker, da das Abrufen jeder neuen Seite ein sequenzielles Durchsuchen vorheriger Datens?tze erfordert.
Wir haben die Grundlagen der Cursor-basierten Paginierung in der NewsDataHub-API behandelt. Informationen zu erweiterten Funktionen wie Suchparametern und Filteroptionen finden Sie in der vollst?ndigen API-Dokumentation unter https://newsdatahub.com/docs.
Das obige ist der detaillierte Inhalt vonGrundlegendes zur Paginierung mit der NewsDataHub-API. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!

Hei?e KI -Werkzeuge

Undress AI Tool
Ausziehbilder kostenlos

Undresser.AI Undress
KI-gestützte App zum Erstellen realistischer Aktfotos

AI Clothes Remover
Online-KI-Tool zum Entfernen von Kleidung aus Fotos.

Clothoff.io
KI-Kleiderentferner

Video Face Swap
Tauschen Sie Gesichter in jedem Video mühelos mit unserem v?llig kostenlosen KI-Gesichtstausch-Tool aus!

Hei?er Artikel

Hei?e Werkzeuge

Notepad++7.3.1
Einfach zu bedienender und kostenloser Code-Editor

SublimeText3 chinesische Version
Chinesische Version, sehr einfach zu bedienen

Senden Sie Studio 13.0.1
Leistungsstarke integrierte PHP-Entwicklungsumgebung

Dreamweaver CS6
Visuelle Webentwicklungstools

SublimeText3 Mac-Version
Codebearbeitungssoftware auf Gottesniveau (SublimeText3)

Hei?e Themen

Pythons untestestes und PyTest sind zwei weit verbreitete Test -Frameworks, die das Schreiben, Organisieren und Ausführen automatisierter Tests vereinfachen. 1. Beide unterstützen die automatische Entdeckung von Testf?llen und liefern eine klare Teststruktur: Unittest definiert Tests durch Erben der Testpase -Klasse und beginnt mit Test \ _; PyTest ist pr?gnanter, ben?tigen nur eine Funktion, die mit Test \ _ beginnt. 2. Sie alle haben eine integrierte Behauptungsunterstützung: Unittest bietet AssertEqual, AssertRue und andere Methoden, w?hrend PyTest eine erweiterte Anweisung für die Assert verwendet, um die Fehlerdetails automatisch anzuzeigen. 3. Alle haben Mechanismen für die Vorbereitung und Reinigung von Tests: un

PythonisidealfordataanalysisduetoNumPyandPandas.1)NumPyexcelsatnumericalcomputationswithfast,multi-dimensionalarraysandvectorizedoperationslikenp.sqrt().2)PandashandlesstructureddatawithSeriesandDataFrames,supportingtaskslikeloading,cleaning,filterin

Die dynamische Programmierung (DP) optimiert den L?sungsprozess, indem komplexe Probleme in einfachere Unterprobleme zerlegt und deren Ergebnisse gespeichert werden, um wiederholte Berechnungen zu vermeiden. Es gibt zwei Hauptmethoden: 1. Top-Down (Memorisierung): Das Problem rekursiv zerlegen und Cache verwenden, um Zwischenergebnisse zu speichern; 2. Bottom-up (Tabelle): Iterativ L?sungen aus der grundlegenden Situation erstellen. Geeignet für Szenarien, in denen maximale/minimale Werte, optimale L?sungen oder überlappende Unterprobleme erforderlich sind, wie Fibonacci -Sequenzen, Rucksackprobleme usw. In Python k?nnen sie durch Dekoratoren oder Arrays implementiert werden, und die Aufmerksamkeit sollte für die Identifizierung rekursiver Beziehungen gezahlt werden, und die Optimierung der Komplexit?t des Raums.

Um einen benutzerdefinierten Iterator zu implementieren, müssen Sie die Methoden __iter__ und __next__ in der Klasse definieren. ① Die __iter__ -Methode gibt das Iteratorobjekt selbst, normalerweise selbst, um mit iterativen Umgebungen wie für Schleifen kompatibel zu sein. ② Die __Next__ -Methode steuert den Wert jeder Iteration, gibt das n?chste Element in der Sequenz zurück, und wenn es keine weiteren Elemente mehr gibt, sollte die Ausnahme der Stopperation geworfen werden. ③ Der Status muss korrekt nachverfolgt werden und die Beendigungsbedingungen müssen festgelegt werden, um unendliche Schleifen zu vermeiden. ④ Komplexe Logik wie Filterung von Dateizeilen und achten Sie auf die Reinigung der Ressourcen und die Speicherverwaltung; ⑤ Für eine einfache Logik k?nnen Sie stattdessen die Funktionsertrags für Generator verwenden, müssen jedoch eine geeignete Methode basierend auf dem spezifischen Szenario ausw?hlen.

Zukünftige Trends in Python umfassen Leistungsoptimierung, st?rkere Typ -Eingabeaufforderungen, der Aufstieg alternativer Laufzeiten und das fortgesetzte Wachstum des KI/ML -Feldes. Erstens optimiert CPython weiterhin und verbessert die Leistung durch schnellere Startzeit, Funktionsaufrufoptimierung und vorgeschlagene Ganzzahloperationen. Zweitens sind Typ -Eingabeaufforderungen tief in Sprachen und Toolchains integriert, um die Sicherheit und Entwicklung von Code zu verbessern. Drittens bieten alternative Laufzeiten wie Pyscript und Nuitka neue Funktionen und Leistungsvorteile; Schlie?lich erweitern die Bereiche von KI und Data Science weiter und aufstrebende Bibliotheken f?rdern eine effizientere Entwicklung und Integration. Diese Trends zeigen, dass Python st?ndig an technologische Ver?nderungen anpasst und seine führende Position aufrechterh?lt.

Das Python-Socket-Modul ist die Grundlage für die Netzwerkprogrammierung und bietet Niveau-Netzwerkkommunikationsfunktionen, die für das Erstellen von Client- und Serveranwendungen geeignet sind. Um einen grundlegenden TCP -Server einzurichten, müssen Sie Socket. Um einen TCP -Client zu erstellen, müssen Sie ein Socket -Objekt erstellen und .Connect () anrufen, um eine Verbindung zum Server herzustellen, und dann .Sendall () zum Senden von Daten und .recv () zum Empfangen von Antworten verwenden. Um mehrere Clients zu handhaben, k?nnen Sie 1. Threads verwenden: Starten Sie jedes Mal einen neuen Thread, wenn Sie eine Verbindung herstellen. 2. Asynchrone E/O: Zum Beispiel kann die Asyncio-Bibliothek eine nicht blockierende Kommunikation erreichen. Dinge zu beachten

Der Polymorphismus ist ein Kernkonzept in der objektorientierten Programmierung von Python-Objekte und bezieht sich auf "eine Schnittstelle, mehrere Implementierungen" und erm?glicht eine einheitliche Verarbeitung verschiedener Arten von Objekten. 1. Polymorphismus wird durch Umschreiben durch Methode implementiert. Unterklassen k?nnen übergeordnete Klassenmethoden neu definieren. Zum Beispiel hat die Spoke () -Methode der Tierklasse unterschiedliche Implementierungen in Hunde- und Katzenunterklassen. 2. Die praktischen Verwendungen des Polymorphismus umfassen die Vereinfachung der Codestruktur und die Verbesserung der Skalierbarkeit, z. 3. Die Python -Implementierungspolymorphismus muss erfüllen: Die übergeordnete Klasse definiert eine Methode, und die untergeordnete Klasse überschreibt die Methode, erfordert jedoch keine Vererbung derselben übergeordneten Klasse. Solange das Objekt dieselbe Methode implementiert, wird dies als "Ententyp" bezeichnet. 4. Zu beachten ist die Wartung

Die Kernantwort auf die Python -Liste Slicing besteht darin, die Syntax [Start: Ende: Stufe] zu beherrschen und ihr Verhalten zu verstehen. 1. Das grundlegende Format der Listenschnitte ist die Liste [Start: Ende: Schritt], wobei der Start der Startindex (enthalten) ist, das Ende ist der Endindex (nicht enthalten) und Schritt ist die Schrittgr??e; 2. Start standardm??ig starten mit 0, lasse Ende standardm??ig bis zum Ende aus, standardm??ig standardm??ig 1 aus. 3.. Verwenden Sie My_List [: n], um die ersten N-Elemente zu erhalten, und verwenden Sie My_List [-n:], um die letzten N-Elemente zu erhalten. 4. Verwenden Sie den Schritt, um Elemente wie my_list [:: 2] zu überspringen, um gleiche Ziffern zu erhalten, und negative Schrittwerte k?nnen die Liste umkehren. 5. H?ufige Missverst?ndnisse umfassen den Endindex nicht
