Metadata in Java, defined as the data about the data, is called “Metadata”. Metadata is also said to be documentation about the information required by the users. This is one of the essential aspects in the case of data warehousing.
ADVERTISEMENT Popular Course in this category JAVA MASTERY - Specialization | 78 Course Series | 15 Mock TestsReal-Time Examples: A library catalog, the table of content, data items about person data (person weight, a person walking, etc.), etc.
Metadata Consisting of the following things:
- The description and location of the system and its components.
- It also has the Names, definitions, content, and structures of data and end-user views.
- Identification of authoritative data.
- Integration and transformation rules are used to populate data.
- Subscription information of subscribers.
- Used to analyze data usage and performance.
Why is Metadata Necessary?
It gives the Java developers information about the contents like table data, library catalog, etc., and structures.
Types of Metadata
There are 3 types of metadata:
- Operational Metadata
- Extraction and Transformation Metadata
- End-User Metadata
1. Operational Metadata: Operational metadata has all the information of the operational data sources. While selecting information from the source system for Datawarehouse, we will divide the records, combine the factors of documents from various sources, and deal with multiple coding schemes and field lengths. While we deliver the information to end-users, then we must be able to get back to source data sets.
2. Extraction and Transformation Metadata: Extraction and Transformation Metadata include data about removing data from the source systems. Those extraction methods, frequencies, and business rules for data extraction belong to Extraction and Transformation Metadata.
3. End-User Metadata: The end-user metadata is the navigational map of the data house. It enables the end-users to find the data from the data warehouse.
How does Metadata work in Java?
Java Metadata works based on data provided to it. It gives information of data about the data.
Syntax:
class Metadata{ public static void main(String args[]){ try{ //load required database class //creating database metadata class DatabaseMetaData metaData=con.getMetaData(); //display the metadata of the table content System.out.println(metaData.getDriverName()); System.out.println(metaData.getDriverVersion()); System.out.println(metaData.getUserName()); System.out.println(metaData.getDatabaseProductName()); System.out.println(metaData.getDatabaseProductVersion()); con.close(); }catch(Exception e){ System.out.println(e);} } }Note: Before getting into the example, you must need MySQL database and mysql-connector jar.
Examples to Implement Metadata in Java
Below are examples of Metadata in Java:
Example #1 – Result Set Metadata
?Code:
import java.sql.*;//importing sql package public class A {//Creating class //main method for run the application public static void main(String args[]) { try { //loading my sql driver Class.forName("com.mysql.jdbc.Driver"); //get the connection by providing database, user name and password Connection connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root", "root"); //select the all from employee table PreparedStatement preparedStatement = connection.prepareStatement("select * from employee"); //executing the query ResultSet resultSet = preparedStatement.executeQuery(); //Create result meta data for get the meta data of table ResultSetMetaData resultSetMetaData = resultSet.getMetaData(); //Displaying meta data of employee table System.out.println("Total Number of columns: " + resultSetMetaData.getColumnCount()); System.out.println("1st Column name : " + resultSetMetaData.getColumnName(1)); System.out.println("2nd Column name : " + resultSetMetaData.getColumnName(2)); System.out.println("3rd Column name : " + resultSetMetaData.getColumnName(3)); System.out.println("Column Type Name of 1st column: " + resultSetMetaData.getColumnTypeName(1)); System.out.println("Column Type Name of 2nd column: " + resultSetMetaData.getColumnTypeName(2)); System.out.println("Column Type Name of 3rd column: " + resultSetMetaData.getColumnTypeName(3)); connection.close(); } catch (Exception e) { System.out.println(e); } } }
Output:
Example #2 – Database Metadata
Code:
import java.sql.*;//importing sql package public class A {//Creating class //main method for run the application public static void main(String args[]) { try { //loading my sql driver Class.forName("com.mysql.jdbc.Driver"); //get the connection by providing database, user name and password Connection connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/test","root", "root"); //select the all from employee table PreparedStatement preparedStatement = connection.prepareStatement("select * from employee"); //executing the query preparedStatement.executeQuery(); //Create databse result set meta data for get the meta data of databse of mysql DatabaseMetaData databaseMetaData=connection.getMetaData(); //Displaying meta data of mysql table System.out.println("MYSQL Driver Name: "+databaseMetaData.getDriverName()); System.out.println("MYSQL Driver Version: "+databaseMetaData.getDriverVersion()); System.out.println("MYSQL UserName: "+databaseMetaData.getUserName()); System.out.println("MYSQL Database Product Name:"+databaseMetaData.getDatabaseProductName()); System.out.println("MYSQL Database Product Version: "+databaseMetaData.getDatabaseProductVersion()); connection.close(); } catch (Exception e) { System.out.println(e); } } }
Output:
Example #3 – Database Metadata for Extracting Table Names
Code:
import java.sql.*;//importing sql package public class A {// Creating class // main method for run the application public static void main(String args[]) { try { // loading my sql driver Class.forName("com.mysql.jdbc.Driver"); // get the connection by providing database, user name and password Connection connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root", "root"); // Create databse result set meta data for get the meta data of // databse of mysql DatabaseMetaData dbmd = connection.getMetaData(); String table[] = { "VIEW" }; ResultSet resultSet = dbmd.getTables(null, null, null, table); // iterating number table names from database of mysql while (resultSet.next()) { System.out.println("Table name is: "+resultSet.getString(3)); } connection.close(); } catch (Exception e) { System.out.println(e); } } }
Output:
Conclusion
Metadata in Java is used to know the data about data. It means, for example, table field names, field data type, field data type length, database table names, number of databases that existed in the specific database, etc.
The above is the detailed content of Metadata in Java. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undress AI Tool
Undress images for free

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Java's class loading mechanism is implemented through ClassLoader, and its core workflow is divided into three stages: loading, linking and initialization. During the loading phase, ClassLoader dynamically reads the bytecode of the class and creates Class objects; links include verifying the correctness of the class, allocating memory to static variables, and parsing symbol references; initialization performs static code blocks and static variable assignments. Class loading adopts the parent delegation model, and prioritizes the parent class loader to find classes, and try Bootstrap, Extension, and ApplicationClassLoader in turn to ensure that the core class library is safe and avoids duplicate loading. Developers can customize ClassLoader, such as URLClassL

Java supports asynchronous programming including the use of CompletableFuture, responsive streams (such as ProjectReactor), and virtual threads in Java19. 1.CompletableFuture improves code readability and maintenance through chain calls, and supports task orchestration and exception handling; 2. ProjectReactor provides Mono and Flux types to implement responsive programming, with backpressure mechanism and rich operators; 3. Virtual threads reduce concurrency costs, are suitable for I/O-intensive tasks, and are lighter and easier to expand than traditional platform threads. Each method has applicable scenarios, and appropriate tools should be selected according to your needs and mixed models should be avoided to maintain simplicity

JavaNIO is a new IOAPI introduced by Java 1.4. 1) is aimed at buffers and channels, 2) contains Buffer, Channel and Selector core components, 3) supports non-blocking mode, and 4) handles concurrent connections more efficiently than traditional IO. Its advantages are reflected in: 1) Non-blocking IO reduces thread overhead, 2) Buffer improves data transmission efficiency, 3) Selector realizes multiplexing, and 4) Memory mapping speeds up file reading and writing. Note when using: 1) The flip/clear operation of the Buffer is easy to be confused, 2) Incomplete data needs to be processed manually without blocking, 3) Selector registration must be canceled in time, 4) NIO is not suitable for all scenarios.

In Java, enums are suitable for representing fixed constant sets. Best practices include: 1. Use enum to represent fixed state or options to improve type safety and readability; 2. Add properties and methods to enums to enhance flexibility, such as defining fields, constructors, helper methods, etc.; 3. Use EnumMap and EnumSet to improve performance and type safety because they are more efficient based on arrays; 4. Avoid abuse of enums, such as dynamic values, frequent changes or complex logic scenarios, which should be replaced by other methods. Correct use of enum can improve code quality and reduce errors, but you need to pay attention to its applicable boundaries.

The key to handling exceptions in Java is to catch them, handle them clearly, and not cover up problems. First, we must catch specific exception types as needed, avoid general catches, and prioritize checkedexceptions. Runtime exceptions should be judged in advance; second, we must use the log framework to record exceptions, and retry, rollback or throw based on the type; third, we must use the finally block to release resources, and recommend try-with-resources; fourth, we must reasonably define custom exceptions, inherit RuntimeException or Exception, and carry context information for easy debugging.

Anonymous internal classes are used in Java to create subclasses or implement interfaces on the fly, and are often used to override methods to achieve specific purposes, such as event handling in GUI applications. Its syntax form is a new interface or class that directly defines the class body, and requires that the accessed local variables must be final or equivalent immutable. Although they are convenient, they should not be overused. Especially when the logic is complex, they can be replaced by Java8's Lambda expressions.

Singleton design pattern in Java ensures that a class has only one instance and provides a global access point through private constructors and static methods, which is suitable for controlling access to shared resources. Implementation methods include: 1. Lazy loading, that is, the instance is created only when the first request is requested, which is suitable for situations where resource consumption is high and not necessarily required; 2. Thread-safe processing, ensuring that only one instance is created in a multi-threaded environment through synchronization methods or double check locking, and reducing performance impact; 3. Hungry loading, which directly initializes the instance during class loading, is suitable for lightweight objects or scenarios that can be initialized in advance; 4. Enumeration implementation, using Java enumeration to naturally support serialization, thread safety and prevent reflective attacks, is a recommended concise and reliable method. Different implementation methods can be selected according to specific needs

Use the installation media to enter the recovery environment; 2. Run the bootrec command to repair the boot records; 3. Check for disk errors and repair system files; 4. Disable automatic repair as a temporary means. The Windows automatic repair loop is usually caused by system files corruption, hard disk errors or boot configuration abnormalities. The solution includes troubleshooting by installing the USB flash drive into the recovery environment, using bootrec to repair MBR and BCD, running chkdsk and DISM/sfc to repair disk and system files. If it is invalid, the automatic repair function can be temporarily disabled, but the root cause needs to be checked later to ensure that the hard disk and boot structure are normal.
