国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Table of Contents
1.Malicious content
2. Hint injection
3. Privacy information/copyright infringement
4. Error Message
5. Harmful Advice
6. Bias
Home Technology peripherals AI Six pitfalls to avoid with large language models

Six pitfalls to avoid with large language models

May 12, 2023 pm 01:01 PM
ai language Model

From security and privacy concerns to misinformation and bias, large language models bring risks and rewards.

There have been incredible advances in artificial intelligence (AI) recently, largely due to advances in developing large language models. These are at the core of text and code generation tools such as ChatGPT, Bard, and GitHub’s Copilot.

These models are being adopted by all departments. But how they are created and used, and how they can be misused, remains a source of concern. Some countries have decided to take a drastic approach and temporarily ban specific large language models until appropriate regulations are in place.

Here’s a look at some of the real-world adverse effects of tools based on large language models, as well as some strategies for mitigating these effects.

1.Malicious content

Large language models can improve productivity in many ways. Their ability to interpret people's requests and solve fairly complex problems means people can leave mundane, time-consuming tasks to their favorite chatbot and simply check the results.

Of course, with great power comes great responsibility. While large language models can create useful material and speed up software development, they can also quickly access harmful information, speed up bad actors' workflows, and even generate malicious content such as phishing emails and malware. When the barrier to entry is as low as writing a well-constructed chatbot prompt, the term "script kiddie" takes on a whole new meaning.

While there are ways to restrict access to objectively dangerous content, they are not always feasible or effective. As with hosted services like chatbots, content filtering can at least help slow things down for inexperienced users. Implementing strong content filters should be necessary, but they are not omnipotent.

2. Hint injection

Specially crafted hints can force large language models to ignore content filters and produce illegal output. This problem is common to all llms, but will be amplified as these models are connected to the outside world; for example, as a plugin for ChatGPT. This could allow the chatbot to "eval" user-generated code, leading to the execution of arbitrary code. From a security perspective, equipping chatbots with this functionality is highly problematic.

To help mitigate this situation, it's important to understand what your LLM-based solution does and how it interacts with external endpoints. Determine whether it is connected to an API, running a social media account, or interacting with customers without supervision, and evaluate the threading model accordingly.

While hint injection may have seemed inconsequential in the past, these attacks can now have very serious consequences as they begin executing generated code, integrating into external APIs, and even reading browser tabs .

Training large language models requires a large amount of data, and some models have more than 500 billion parameters. At this scale, understanding provenance, authorship, and copyright status is a difficult, if not impossible, task. Unchecked training sets can lead to models leaking private data, falsely attributing quotes, or plagiarizing copyrighted content.

Data privacy laws regarding the use of large language models are also very vague. As we’ve learned in social media, if something is free, chances are the users are the product. It’s worth remembering that if people ask the chatbot to find bugs in our code or write sensitive documents, we’re sending that data to third parties who may ultimately use it for model training, advertising, or competitive advantage. AI-prompted data breaches can be particularly damaging in business settings.

As services based on large language models integrate with workplace productivity tools like Slack and Teams, carefully read the provider’s privacy policy, understand how AI prompts are used, and regulate large language models accordingly For use in the workplace, this is critical. When it comes to copyright protection, we need to regulate access to and use of data through opt-ins or special licenses, without hampering the open and largely free Internet we have today.

4. Error Message

While large language models can convincingly pretend to be smart, they don’t really “understand” what they produce. Instead, their currency is probabilistic relationships between words. They are unable to distinguish between fact and fiction - some output may appear perfectly believable, but turn out to be a confident phrasing that is untrue. An example of this is ChatGPT doctoring citations and even entire papers, as one Twitter user recently discovered directly.

Large-scale language model tools can prove extremely useful in a wide range of tasks, but humans must be involved in validating the accuracy, benefit, and overall plausibility of their responses.

The output of LLM tools should always be taken with a grain of salt. These tools are useful in a wide range of tasks, but humans must be involved in validating the accuracy, benefit, and overall plausibility of their responses. Otherwise, we will be disappointed.

5. Harmful Advice

When chatting online, it is increasingly difficult to tell whether you are talking to a human or a machine, and some entities may try to take advantage of this. For example, earlier this year, a mental health tech company admitted that some users seeking online counseling unknowingly interacted with GPT3-based bots instead of human volunteers. This raises ethical concerns about the use of large language models in mental health care and any other setting that relies on interpreting human emotions.

Currently, there is little regulatory oversight to ensure that companies cannot leverage AI in this way without the end-user’s explicit consent. Additionally, adversaries can leverage convincing AI bots to conduct espionage, fraud, and other illegal activities.

Artificial intelligence has no emotions, but its reactions may hurt people's feelings and even lead to more tragic consequences. It is irresponsible to assume that AI solutions can fully interpret and respond to human emotional needs responsibly and safely.

The use of large language models in healthcare and other sensitive applications should be strictly regulated to prevent any risk of harm to users. LLM-based service providers should always inform users of the scope of AI's contribution to the service, and interacting with bots should always be an option, not the default.

6. Bias

AI solutions are only as good as the data they are trained on. This data often reflects our biases against political party, race, gender or other demographics. Bias can negatively impact affected groups, where models make unfair decisions, and can be both subtle and potentially difficult to address. Models trained on uncensored internet data will always reflect human biases; models that continuously learn from user interactions are also susceptible to deliberate manipulation.

To reduce the risk of discrimination, large language model service providers must carefully evaluate their training data sets to avoid any imbalances that could lead to negative consequences. Machine learning models should also be checked regularly to ensure predictions remain fair and accurate.

Large-scale language models completely redefine the way we interact with software, bringing countless improvements to our workflows. However, due to the current lack of meaningful regulations for artificial intelligence and the lack of security for machine learning models, widespread and rushed implementation of large language models is likely to experience major setbacks. Therefore, this valuable technology must be quickly regulated and protected. ?

The above is the detailed content of Six pitfalls to avoid with large language models. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

PHP Tutorial
1502
276
What is Ethereum? What are the ways to obtain Ethereum ETH? What is Ethereum? What are the ways to obtain Ethereum ETH? Jul 31, 2025 pm 11:00 PM

Ethereum is a decentralized application platform based on smart contracts, and its native token ETH can be obtained in a variety of ways. 1. Register an account through centralized platforms such as Binance and Ouyiok, complete KYC certification and purchase ETH with stablecoins; 2. Connect to digital storage through decentralized platforms, and directly exchange ETH with stablecoins or other tokens; 3. Participate in network pledge, and you can choose independent pledge (requires 32 ETH), liquid pledge services or one-click pledge on the centralized platform to obtain rewards; 4. Earn ETH by providing services to Web3 projects, completing tasks or obtaining airdrops. It is recommended that beginners start from mainstream centralized platforms, gradually transition to decentralized methods, and always attach importance to asset security and independent research, to

How to choose a free market website in the currency circle? The most comprehensive review in 2025 How to choose a free market website in the currency circle? The most comprehensive review in 2025 Jul 29, 2025 pm 06:36 PM

The most suitable tools for querying stablecoin markets in 2025 are: 1. Binance, with authoritative data and rich trading pairs, and integrated TradingView charts suitable for technical analysis; 2. Ouyi, with clear interface and strong functional integration, and supports one-stop operation of Web3 accounts and DeFi; 3. CoinMarketCap, with many currencies, and the stablecoin sector can view market value rankings and deans; 4. CoinGecko, with comprehensive data dimensions, provides trust scores and community activity indicators, and has a neutral position; 5. Huobi (HTX), with stable market conditions and friendly operations, suitable for mainstream asset inquiries; 6. Gate.io, with the fastest collection of new coins and niche currencies, and is the first choice for projects to explore potential; 7. Tra

Ethena treasury strategy: the rise of the third empire of stablecoin Ethena treasury strategy: the rise of the third empire of stablecoin Jul 30, 2025 pm 08:12 PM

The real use of battle royale in the dual currency system has not yet happened. Conclusion In August 2023, the MakerDAO ecological lending protocol Spark gave an annualized return of $DAI8%. Then Sun Chi entered in batches, investing a total of 230,000 $stETH, accounting for more than 15% of Spark's deposits, forcing MakerDAO to make an emergency proposal to lower the interest rate to 5%. MakerDAO's original intention was to "subsidize" the usage rate of $DAI, almost becoming Justin Sun's Solo Yield. July 2025, Ethe

What is Binance Treehouse (TREE Coin)? Overview of the upcoming Treehouse project, analysis of token economy and future development What is Binance Treehouse (TREE Coin)? Overview of the upcoming Treehouse project, analysis of token economy and future development Jul 30, 2025 pm 10:03 PM

What is Treehouse(TREE)? How does Treehouse (TREE) work? Treehouse Products tETHDOR - Decentralized Quotation Rate GoNuts Points System Treehouse Highlights TREE Tokens and Token Economics Overview of the Third Quarter of 2025 Roadmap Development Team, Investors and Partners Treehouse Founding Team Investment Fund Partner Summary As DeFi continues to expand, the demand for fixed income products is growing, and its role is similar to the role of bonds in traditional financial markets. However, building on blockchain

Ethereum (ETH) NFT sold nearly $160 million in seven days, and lenders launched unsecured crypto loans with World ID Ethereum (ETH) NFT sold nearly $160 million in seven days, and lenders launched unsecured crypto loans with World ID Jul 30, 2025 pm 10:06 PM

Table of Contents Crypto Market Panoramic Nugget Popular Token VINEVine (114.79%, Circular Market Value of US$144 million) ZORAZora (16.46%, Circular Market Value of US$290 million) NAVXNAVIProtocol (10.36%, Circular Market Value of US$35.7624 million) Alpha interprets the NFT sales on Ethereum chain in the past seven days, and CryptoPunks ranked first in the decentralized prover network Succinct launched the Succinct Foundation, which may be the token TGE

Solana and the founders of Base Coin start a debate: the content on Zora has 'basic value' Solana and the founders of Base Coin start a debate: the content on Zora has 'basic value' Jul 30, 2025 pm 09:24 PM

A verbal battle about the value of "creator tokens" swept across the crypto social circle. Base and Solana's two major public chain helmsmans had a rare head-on confrontation, and a fierce debate around ZORA and Pump.fun instantly ignited the discussion craze on CryptoTwitter. Where did this gunpowder-filled confrontation come from? Let's find out. Controversy broke out: The fuse of Sterling Crispin's attack on Zora was DelComplex researcher Sterling Crispin publicly bombarded Zora on social platforms. Zora is a social protocol on the Base chain, focusing on tokenizing user homepage and content

What is Zircuit (ZRC currency)? How to operate? ZRC project overview, token economy and prospect analysis What is Zircuit (ZRC currency)? How to operate? ZRC project overview, token economy and prospect analysis Jul 30, 2025 pm 09:15 PM

Directory What is Zircuit How to operate Zircuit Main features of Zircuit Hybrid architecture AI security EVM compatibility security Native bridge Zircuit points Zircuit staking What is Zircuit Token (ZRC) Zircuit (ZRC) Coin Price Prediction How to buy ZRC Coin? Conclusion In recent years, the niche market of the Layer2 blockchain platform that provides services to the Ethereum (ETH) Layer1 network has flourished, mainly due to network congestion, high handling fees and poor scalability. Many of these platforms use up-volume technology, multiple transaction batches processed off-chain

Why does Binance account registration fail? Causes and solutions Why does Binance account registration fail? Causes and solutions Jul 31, 2025 pm 07:09 PM

The failure to register a Binance account is mainly caused by regional IP blockade, network abnormalities, KYC authentication failure, account duplication, device compatibility issues and system maintenance. 1. Use unrestricted regional nodes to ensure network stability; 2. Submit clear and complete certificate information and match nationality; 3. Register with unbound email address; 4. Clean the browser cache or replace the device; 5. Avoid maintenance periods and pay attention to the official announcement; 6. After registration, you can immediately enable 2FA, address whitelist and anti-phishing code, which can complete registration within 10 minutes and improve security by more than 90%, and finally build a compliance and security closed loop.

See all articles