En Java, lorsque vous travaillez avec des cha?nes mutables (cha?nes pouvant être modifiées), vous devrez peut-être choisir entre StringBuilder et StringBuffer. Bien que les deux soient des classes mutables qui permettent de modifier leurs valeurs, elles diffèrent considérablement en termes de sécurité des threads, performances et application. Ici, nous comparerons leurs caractéristiques et fournirons des exemples de code pour illustrer quand utiliser chacun d’eux.
Différences clés?: StringBuilder et StringBuffer
Feature | StringBuilder | StringBuffer |
---|---|---|
Mutability | Mutable | Mutable |
Stored in | Heap (does not use String Pool) | Heap (does not use String Pool) |
Thread Safety | Not thread-safe | Thread-safe |
Synchronization | Not synchronized | Synchronized |
Performance | Faster due to lack of synchronization | Slower due to synchronization overhead |
Use Case | Single-threaded scenarios | Multi-threaded scenarios where thread-safety is required |
Explorons chaque classe plus en détail.
1. StringBuilder?: le choix efficace pour les environnements monothread
StringBuilder est une classe mutable, ce qui signifie qu'elle permet de modifier son contenu.
Il est thread-unsafe, il est donc idéal pour les scénarios à thread unique.
Non synchronisé?: StringBuilder est plus rapide que StringBuffer en raison de l'absence de surcharge de synchronisation.
Limitation multithread?: L'utilisation de StringBuilder dans des environnements multithread sans mesures de sécurité supplémentaires peut entra?ner des conditions de concurrence et d'autres problèmes de concurrence.
Exemple?: démonstration de la non-sécurité des threads dans StringBuilder
Dans cet exemple, nous utilisons deux threads pour ajouter des caractères à une instance StringBuilder. Cependant, du fait du manque de synchronisation, nous rencontrons des conditions de course?:
public class StringBuilderBasics { public void threadUnsafe() { // Common resource being shared StringBuilder builder = new StringBuilder(); // Thread appending "A" 1000 times Thread t1 = new Thread(() -> { for (int i = 0; i < 1000; i++) { builder.append("A"); } }); // Thread appending "B" 1000 times Thread t2 = new Thread(() -> { for (int i = 0; i < 1000; i++) { builder.append("B"); } }); t1.start(); t2.start(); try { t1.join(); t2.join(); } catch (InterruptedException e) { e.printStackTrace(); } // Result: 1840 (unpredictable) System.out.println("Length: " + builder.toString().length()); } public static void main(String[] args) { new StringBuilderBasics().threadUnsafe(); } }
Explication?:
En raison d'un risque de thread, la longueur finale de la sortie StringBuilder est imprévisible (par exemple, 1840 au lieu de 2000).
Cela se produit parce que les deux threads tentent d'ajouter des caractères simultanément, ce qui entra?ne des écrasements ou des opérations supprimées.
à retenir?: utilisez StringBuilder uniquement dans des environnements monothread ou lorsque la sécurité des threads est gérée en externe.
2. StringBuffer?: l'option s?re pour les environnements multithread
StringBuffer est mutable, permettant des modifications de son contenu.
Il est synchronisé, ce qui le rend thread-safe.
Idéal pour les environnements multi-thread où la sécurité des threads est nécessaire.
Co?t de performance?: la synchronisation introduit une surcharge, donc StringBuffer est plus lent que StringBuilder.
Exemple?: sécurité des threads dans StringBuffer
Voici le même exemple que ci-dessus, mais cette fois en utilisant StringBuffer?:
public class StringBufferBasics { public void threadSafe() { // Common resource being shared StringBuffer buffer = new StringBuffer(); // Thread appending "A" 1000 times Thread t1 = new Thread(() -> { for (int i = 0; i < 1000; i++) { buffer.append("A"); } }); // Thread appending "B" 1000 times Thread t2 = new Thread(() -> { for (int i = 0; i < 1000; i++) { buffer.append("B"); } }); t1.start(); t2.start(); try { t1.join(); t2.join(); } catch (InterruptedException e) { e.printStackTrace(); } // Result: 2000 System.out.println("Length: " + buffer.toString().length()); } public static void main(String[] args) { new StringBufferBasics().threadSafe(); } }
Explication?:
StringBuffer garantit que les deux threads s'ajoutent en toute sécurité, atteignant la longueur attendue de 2000.
Bien que la cha?ne finale soit thread-safe, la sortie peut être entrelacée (par exemple, "AAABBB..." mélangés) car l'ordre d'exécution des threads est non déterministe.
à retenir?: utilisez StringBuffer pour les applications multithread où la cohérence des données est cruciale et la synchronisation est nécessaire.
Choisir la bonne classe
Pour choisir entre StringBuilder et StringBuffer, considérez ce qui suit?:
Utilisez StringBuilder dans des scénarios à thread unique où les performances sont critiques et où la sécurité des threads n'est pas un problème.
Utilisez StringBuffer dans des scénarios multithread où vous avez besoin d'opérations de cha?ne mutables et exigez la sécurité des threads pour éviter les conditions de concurrence.
Conclusion
Cette comparaison devrait vous aider à faire un choix éclairé entre StringBuilder et StringBuffer. Comprendre les compromis en matière de mutabilité, de performances et de sécurité des threads peut conduire à une meilleure prise de décision lorsque vous travaillez avec des cha?nes en Java.
Articles connexes
- Fondamentaux de Java
- Les essentiels de l'entretien avec Array
- L'essentiel de la mémoire Java
- L'essentiel des mots-clés Java
- L'essentiel de Java OOP
- L'essentiel du cadre de collections
Bon codage?!
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undress AI Tool
Images de déshabillage gratuites

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Article chaud

Outils chauds

Bloc-notes++7.3.1
éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Java utilise des classes de wrapper car les types de données de base ne peuvent pas participer directement aux opérations orientées objet, et les formulaires d'objets sont souvent nécessaires dans les besoins réels; 1. Les classes de collecte ne peuvent stocker que des objets, tels que les listes, l'utilisation de la boxe automatique pour stocker des valeurs numériques; 2. Les génériques ne prennent pas en charge les types de base et les classes d'emballage doivent être utilisées comme paramètres de type; 3. Les classes d'emballage peuvent représenter les valeurs nulles pour distinguer les données non définies ou manquantes; 4. Les cours d'emballage fournissent des méthodes pratiques telles que la conversion de cha?nes pour faciliter l'analyse et le traitement des données, donc dans les scénarios où ces caractéristiques sont nécessaires, les classes de packaging sont indispensables.

La différence entre le hashmap et le hashtable se reflète principalement dans la sécurité des threads, la prise en charge de la valeur nul et les performances. 1. En termes de sécurité des threads, le hashtable est en filetage et ses méthodes sont principalement des méthodes synchrones, tandis que HashMAP n'effectue pas de traitement de synchronisation, qui n'est pas un filetage; 2. En termes de support de valeur nulle, HashMap permet une clé nul et plusieurs valeurs nulles, tandis que le hashtable ne permet pas les clés ou les valeurs nulles, sinon une nulpointerexception sera lancée; 3. En termes de performances, le hashmap est plus efficace car il n'y a pas de mécanisme de synchronisation et le hashtable a une faible performance de verrouillage pour chaque opération. Il est recommandé d'utiliser à la place ConcurrentHashMap.

Le compilateur JIT optimise le code à travers quatre méthodes: méthode en ligne, détection et compilation de points chauds, spéculation et dévigtualisation de type et élimination redondante. 1. La méthode en ligne réduit les frais généraux d'appel et inserte fréquemment appelées petites méthodes directement dans l'appel; 2. Détection de points chauds et exécution de code haute fréquence et optimiser de manière centralisée pour économiser des ressources; 3. Type Speculations collecte les informations de type d'exécution pour réaliser des appels de déviptualisation, améliorant l'efficacité; 4. Les opérations redondantes éliminent les calculs et les inspections inutiles en fonction de la suppression des données opérationnelles, améliorant les performances.

StaticMethodsinInterfaceswereintrocedInjava8TollowutilityfonctionwithIntheInterface self.beforejava8, telfunctionsrequuresepatehelperclasses, leadstodisorganizedCode.now, staticmethodsprovidethrekeyefits: 1) ils sont en train

Les blocs d'initialisation d'instance sont utilisés dans Java pour exécuter la logique d'initialisation lors de la création d'objets, qui sont exécutés avant le constructeur. Il convient aux scénarios où plusieurs constructeurs partagent le code d'initialisation, l'initialisation du champ complexe ou les scénarios d'initialisation de classe anonyme. Contrairement aux blocs d'initialisation statiques, il est exécuté à chaque fois qu'il est instancié, tandis que les blocs d'initialisation statiques ne s'exécutent qu'une seule fois lorsque la classe est chargée.

Injava, thefinalkeywordpreventsavariable'svaluefrombeingchangedafterAsssignment, mais cetsbehaviDiffersFortimitives et objectreferences.forprimitivevariables, finalMakeShevalueConstant, AsinfininTMax_peed = 100; whitereSsignmentCausAnesanerror.ForobjectRe

Il existe deux types de conversion: implicite et explicite. 1. La conversion implicite se produit automatiquement, comme la conversion INT en double; 2. La conversion explicite nécessite un fonctionnement manuel, comme l'utilisation de (int) MyDouble. Un cas où la conversion de type est requise comprend le traitement de l'entrée des utilisateurs, les opérations mathématiques ou le passage de différents types de valeurs entre les fonctions. Les problèmes qui doivent être notés sont les suivants: transformer les nombres à virgule flottante en entiers tronqueront la partie fractionnaire, transformer les grands types en petits types peut entra?ner une perte de données, et certaines langues ne permettent pas la conversion directe de types spécifiques. Une bonne compréhension des règles de conversion du langage permet d'éviter les erreurs.

Le mode d'usine est utilisé pour encapsuler la logique de création d'objets, ce qui rend le code plus flexible, facile à entretenir et à couplé de manière lache. La réponse principale est: en gérant de manière centralisée la logique de création d'objets, en cachant les détails de l'implémentation et en soutenant la création de plusieurs objets liés. La description spécifique est la suivante: Le mode d'usine remet la création d'objets à une classe ou une méthode d'usine spéciale pour le traitement, en évitant directement l'utilisation de newClass (); Il convient aux scénarios où plusieurs types d'objets connexes sont créés, la logique de création peut changer et les détails d'implémentation doivent être cachés; Par exemple, dans le processeur de paiement, Stripe, PayPal et d'autres instances sont créés par le biais d'usines; Son implémentation comprend l'objet renvoyé par la classe d'usine en fonction des paramètres d'entrée, et tous les objets réalisent une interface commune; Les variantes communes incluent des usines simples, des méthodes d'usine et des usines abstraites, qui conviennent à différentes complexités.
