


Compétences en matière de conversion de données C++ et de mise en ?uvre de fonctions de codage et de décodage dans le développement de systèmes embarqués
Aug 26, 2023 pm 05:24 PMConversion de données C++ et compétences en matière de mise en ?uvre des fonctions d'encodage et de décodage dans le développement de systèmes embarqués
Dans le développement de systèmes embarqués, la conversion de données, ainsi que l'encodage et le décodage sont l'une des fonctions très importantes. Qu’il s’agisse de convertir des données d’un format à un autre ou de coder et décoder des données pour la transmission et le stockage, des techniques et des algorithmes efficaces sont nécessaires pour y parvenir. En tant que langage de programmation largement utilisé dans le développement de systèmes embarqués, C++ fournit une multitude de bibliothèques et d'outils pour prendre en charge la mise en ?uvre de fonctions de conversion de données et de codage et de décodage.
Ci-dessous, nous présenterons quelques techniques courantes pour implémenter la conversion, l'encodage et le décodage de données en C++, et joindrons des exemples de code correspondants.
1. Conversion de types de données
Dans le développement de systèmes embarqués, il est souvent nécessaire de convertir différents types de données. Par exemple, convertissez un entier en cha?ne, convertissez une cha?ne en entier, convertissez un flottant en entier, etc. C++ fournit quelques bibliothèques pour prendre en charge ces opérations de conversion.
- Conversion d'entiers et de cha?nes
Pour convertir des entiers en cha?nes, vous pouvez utiliser la classe ostringstream. Voici un exemple de code?:
#include <iostream> #include <sstream> int main() { int num = 123; std::ostringstream oss; oss << num; std::string str = oss.str(); std::cout << "Integer to string: " << str << std::endl; return 0; }
Pour convertir une cha?ne en entier, vous pouvez utiliser la classe istringstream. Voici un exemple de code?:
#include <iostream> #include <string> #include <sstream> int main() { std::string str = "123"; std::istringstream iss(str); int num; iss >> num; std::cout << "String to integer: " << num << std::endl; return 0; }
- Conversion de nombres à virgule flottante en entiers
Pour convertir des nombres à virgule flottante en entiers, vous pouvez utiliser l'opérateur de conversion de type. Voici un exemple de code?:
#include <iostream> int main() { double num = 3.14; int integer = static_cast<int>(num); std::cout << "Double to integer: " << integer << std::endl; return 0; }
Pour convertir un entier en nombre à virgule flottante, vous pouvez utiliser l'opérateur de conversion de type. Voici un exemple de code?:
#include <iostream> int main() { int integer = 3; double num = static_cast<double>(integer); std::cout << "Integer to double: " << num << std::endl; return 0; }
2. Encodage et décodage
Dans les systèmes embarqués, il est souvent nécessaire d'encoder et de décoder les données pour la transmission et le stockage. Par exemple, compressez et décompressez des données, cryptez et déchiffrez des données, etc. C++ fournit des bibliothèques pour prendre en charge ces opérations d'encodage et de décodage.
- Compression et décompression de données
En C++, vous pouvez utiliser la bibliothèque zlib pour réaliser la compression et la décompression de données. Voici un exemple de code?:
#include <iostream> #include <string> #include <cstring> #include <zlib.h> std::string compress(const std::string& str) { z_stream zs; memset(&zs, 0, sizeof(zs)); if (deflateInit(&zs, Z_DEFAULT_COMPRESSION) != Z_OK) { return ""; } zs.next_in = (Bytef*)(str.c_str()); zs.avail_in = str.size() + 1; char outbuffer[32768]; std::string outstring; do { zs.next_out = reinterpret_cast<Bytef*>(outbuffer); zs.avail_out = sizeof(outbuffer); if (deflate(&zs, Z_FINISH) == Z_STREAM_ERROR) { deflateEnd(&zs); return ""; } outstring.append(outbuffer, sizeof(outbuffer) - zs.avail_out); } while (zs.avail_out == 0); deflateEnd(&zs); return outstring; } std::string decompress(const std::string& str) { z_stream zs; memset(&zs, 0, sizeof(zs)); if (inflateInit(&zs) != Z_OK) { return ""; } zs.next_in = (Bytef*)(str.c_str()); zs.avail_in = str.size(); char outbuffer[32768]; std::string outstring; do { zs.next_out = reinterpret_cast<Bytef*>(outbuffer); zs.avail_out = sizeof(outbuffer); if (inflate(&zs, 0) == Z_STREAM_ERROR) { inflateEnd(&zs); return ""; } outstring.append(outbuffer, sizeof(outbuffer) - zs.avail_out); } while (zs.avail_out == 0); inflateEnd(&zs); return outstring; } int main() { std::string str = "Hello, World!"; // 壓縮 std::string compressed = compress(str); std::cout << "Compressed: " << compressed << std::endl; // 解壓縮 std::string decompressed = decompress(compressed); std::cout << "Decompressed: " << decompressed << std::endl; return 0; }
- Chiffrement et décryptage des données
En C++, vous pouvez utiliser la bibliothèque openssl pour implémenter le cryptage et le décryptage des données. Voici un exemple de code?:
#include <iostream> #include <string> #include <openssl/aes.h> #include <openssl/rand.h> std::string encrypt(const std::string& key, const std::string& plain) { std::string encrypted; AES_KEY aesKey; if (AES_set_encrypt_key(reinterpret_cast<const unsigned char*>(key.c_str()), 128, &aesKey) < 0) { return ""; } int len = plain.length(); if (len % 16 != 0) { len = (len / 16 + 1) * 16; } unsigned char outbuffer[1024]; memset(outbuffer, 0, sizeof(outbuffer)); AES_encrypt(reinterpret_cast<const unsigned char*>(plain.c_str()), outbuffer, &aesKey); encrypted.assign(reinterpret_cast<char*>(outbuffer), len); return encrypted; } std::string decrypt(const std::string& key, const std::string& encrypted) { std::string decrypted; AES_KEY aesKey; if (AES_set_decrypt_key(reinterpret_cast<const unsigned char*>(key.c_str()), 128, &aesKey) < 0) { return ""; } unsigned char outbuffer[1024]; memset(outbuffer, 0, sizeof(outbuffer)); AES_decrypt(reinterpret_cast<const unsigned char*>(encrypted.c_str()), outbuffer, &aesKey); decrypted.assign(reinterpret_cast<char*>(outbuffer)); return decrypted; } int main() { std::string key = "1234567890123456"; std::string plain = "Hello, World!"; // 加密 std::string encrypted = encrypt(key, plain); std::cout << "Encrypted: " << encrypted << std::endl; // 解密 std::string decrypted = decrypt(key, encrypted); std::cout << "Decrypted: " << decrypted << std::endl; return 0; }
Cet article présente quelques techniques courantes de conversion, d'encodage et de décodage de données en C++ dans le développement de systèmes embarqués, et fournit des exemples de code pertinents. J'espère que cela sera utile aux développeurs engagés dans le développement de systèmes embarqués.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undress AI Tool
Images de déshabillage gratuites

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
échangez les visages dans n'importe quelle vidéo sans effort grace à notre outil d'échange de visage AI entièrement gratuit?!

Article chaud

Outils chauds

Bloc-notes++7.3.1
éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

STD :: Chrono est utilisé en C pour traiter le temps, y compris l'obtention de l'heure actuelle, la mesure du temps d'exécution, le point de fonctionnement et la durée de l'opération et le temps d'analyse de formatage. 1. Utilisez STD :: Chrono :: System_clock :: Now () pour obtenir l'heure actuelle, qui peut être convertie en une cha?ne lisible, mais l'horloge système peut ne pas être monotone; 2. Utilisez STD :: Chrono :: standard_clock pour mesurer le temps d'exécution pour assurer la monotonie, et la convertir en millisecondes, secondes et autres unités via durée_cast; 3. Point de temps (temps_point) et durée (durée) peut être interopérable, mais l'attention doit être accordée à la compatibilité des unités et à l'époque de l'horloge (époque)

En C, le type POD (PlainoldData) fait référence à un type avec une structure simple et compatible avec le traitement des données du langage C. Il doit remplir deux conditions: il a une sémantique de copie ordinaire, qui peut être copiée par MEMCPY; Il a une disposition standard et la structure de la mémoire est prévisible. Les exigences spécifiques incluent: tous les membres non statiques sont publics, pas de constructeurs ou de destructeurs définis par l'utilisateur, pas de fonctions virtuelles ou de classes de base, et tous les membres non statiques eux-mêmes sont des pods. Par exemple, structPoint {intx; Inty;} est pod. Ses utilisations incluent les E / S binaires, l'interopérabilité C, l'optimisation des performances, etc. Vous pouvez vérifier si le type est POD via STD :: IS_POD, mais il est recommandé d'utiliser STD :: IS_TRIVIA après C 11.

Anullpointerinc isasaspecialvalueINDICATINGSTATAPOInterDoOesNotPointToanyValidMemoryLocation, andisesesedTosafelyManageAndcheckpointersBeforedereencing.1.BeForec 11,0orlwasused, butnownullptrisprefort

Pour appeler le code Python en C, vous devez d'abord initialiser l'interprète, puis vous pouvez réaliser l'interaction en exécutant des cha?nes, des fichiers ou en appelant des fonctions spécifiques. 1. Initialisez l'interpréteur avec py_initialize () et fermez-le avec py_finalalize (); 2. Exécuter le code de cha?ne ou pyrun_simplefile avec pyrun_simplefile; 3. Importez des modules via pyimport_importmodule, obtenez la fonction via pyObject_getattrstring, construisez des paramètres de py_buildvalue, appelez la fonction et le retour de processus

En C, il existe trois fa?ons principales de passer les fonctions comme paramètres: en utilisant des pointeurs de fonction, des expressions de fonction STD :: et de lambda et des génériques de modèle. 1. Les pointeurs de fonction sont la méthode la plus élémentaire, adaptée à des scénarios simples ou à une interface C compatible, mais une mauvaise lisibilité; 2. STD :: Fonction combinée avec les expressions de lambda est une méthode recommandée dans le C moderne, soutenant une variété d'objets appelées et étant de type type; 3. Template Les méthodes génériques sont les plus flexibles, adaptées au code de la bibliothèque ou à la logique générale, mais peuvent augmenter le temps de compilation et le volume de code. Les lambdas qui capturent le contexte doivent être passés à travers la fonction STD :: ou le modèle et ne peuvent pas être convertis directement en pointeurs de fonction.

La clé d'une classe abstraite est qu'elle contient au moins une fonction virtuelle pure. Lorsqu'une fonction virtuelle pure est déclarée dans la classe (comme VirtualVoidDoSomething () = 0;), la classe devient une classe abstraite et ne peut pas instancier directement l'objet, mais le polymorphisme peut être réalisé par des pointeurs ou des références; Si la classe dérivée n'implémente pas toutes les fonctions virtuelles pures, elle restera également une classe abstraite. Les classes abstraites sont souvent utilisées pour définir des interfaces ou des comportements partagés, tels que la conception de classes de forme dans des applications de dessin et la mise en ?uvre de la méthode Draw () par des classes dérivées telles que le cercle et le rectangle. Les scénarios utilisant des classes abstraits comprennent: la conception de classes de base qui ne devraient pas être instanciées directement, for?ant plusieurs classes connexes à suivre une interface unifiée, en fournissant un comportement par défaut et en nécessitant des sous-classes pour compléter les détails. De plus, C

Il existe trois moyens efficaces de générer des UUID ou des guides en C: 1. Utilisez la bibliothèque Boost, qui fournit une prise en charge multi-version et est simple à interface; 2. Générer manuellement la version4uuides adaptée aux besoins simples; 3. Utilisez des API spécifiques à la plate-forme (telles que Windows 'CoCreateGuid), sans dépendances tierces. Boost convient à la plupart des projets modernes, la mise en ?uvre manuelle convient aux scénarios légers et API Platform convient aux environnements d'entreprise.

En C, le mot-clé mutable est utilisé pour permettre à l'objet d'être modifié, même si l'objet est déclaré const. Son objectif principal est de maintenir les constantes logiques de l'objet tout en permettant des changements d'état interne, qui se trouvent couramment dans les primitives de cache, de débogage et de synchronisation des threads. Lorsque vous l'utilisez, mutable doit être placé devant le membre de données dans la définition de la classe, et il ne s'applique qu'aux membres de données plut?t qu'aux variables globales ou locales. Dans les meilleures pratiques, les abus doivent être évités, la synchronisation simultanée doit être prêtée attention et un comportement externe doit être assuré. Par exemple, Std :: Shared_PTR utilise mutable pour gérer le comptage de référence pour réaliser la sécurité des filetages et l'exactitude constante.
