国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

What is Clean Code?

Nov 13, 2024 am 02:26 AM

What is Clean Code?

Hi devs,
When developers talk about "clean code," they’re usually referring to code that is easy to read, understand, and maintain. Clean code isn’t just about making your code look nice—it’s about writing code that anyone in your team can pick up, understand, and modify without having to wade through endless comments or confusing logic. Writing clean code is about craftsmanship and adopting a mindset that values simplicity, clarity, and purpose.

In this post, we’ll explore the main principles of clean code, why it matters, and provide examples in Python to show how these ideas can be applied in practice.


Why Clean Code Matters

  1. Readability: Code is more often read than written. Clean code ensures that it can be read and understood quickly by others (and by you in the future).
  2. Maintainability: Clean code is easier to modify, fix, and extend without introducing bugs.
  3. Scalability: Clean, modular code is easier to scale and adapt to new requirements.
  4. Reduced Technical Debt: Messy code can lead to bugs, and each fix introduces more complexity. Clean code avoids this spiral by maintaining simplicity.

The benefits are obvious, but achieving clean code is a discipline. Let's look at the fundamental principles.


Key Principles of Clean Code

1. Meaningful Names

Names should communicate intent. Variable, function, and class names should clearly describe their purpose.

Example:

In the "bad" example, it’s unclear what cal, x, and y represent. In the "good" example, calculate_area, width, and height communicate purpose and make the code self-explanatory.


2. Single Responsibility Principle (SRP)

Each function or class should have a single responsibility or purpose. This reduces complexity and makes the code easier to understand and maintain.

Example:

In the "good" example, Order and OrderConfirmationEmail are responsible for different aspects of the application, following SRP.


3. Avoid Magic Numbers and Strings

Use constants or variables for any "magic" numbers or strings to make your code clearer and easier to modify.

Example:


4. Keep Functions Small and Focused

Functions should do one thing and do it well. Avoid having functions that are long or do multiple tasks.

Example:

Each function in the "good" example does one specific task, making the code more modular and reusable.


5. Use Comments Wisely

Comments should explain "why," not "what." Code should ideally be self-explanatory; use comments sparingly and for context only when necessary.

Example:

In the "bad" example, the comment is redundant. In the "good" example, the comment gives additional context, explaining why we’re applying the discount.


6. Consistent Formatting

Consistent formatting, such as indentation and line breaks, improves readability. Follow a standard style guide like PEP 8 for Python, or define your team’s coding conventions.

Example:


7. Error Handling

Handle errors gracefully. Code should anticipate potential errors, with clear error messages and recovery options.

Example:

The "good" example ensures that errors are handled, and resources are properly closed.


The Mindset Behind Clean Code

Clean code requires a mindset that prioritizes simplicity, clarity, and empathy for other developers who will read and maintain the code. This mindset values practices that keep code concise yet informative, reducing unnecessary complexity and making the codebase more reliable and enjoyable to work with.


Wrapping Up

Writing clean code is an ongoing learning process, and it takes effort and discipline. Remember:

  • Name things clearly.
  • Keep functions small.
  • Follow the Single Responsibility Principle.
  • Handle errors gracefully.

Clean code might seem like extra effort, but the payoff in maintainability, collaboration, and future-proofing your work is invaluable. Embrace these principles, and you’ll be on your way to building software that not only works but is a joy to work with.

Let’s keep our code clean and our projects scalable!

The above is the detailed content of What is Clean Code?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undress AI Tool

Undress AI Tool

Undress images for free

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

PHP Tutorial
1488
72
How to handle API authentication in Python How to handle API authentication in Python Jul 13, 2025 am 02:22 AM

The key to dealing with API authentication is to understand and use the authentication method correctly. 1. APIKey is the simplest authentication method, usually placed in the request header or URL parameters; 2. BasicAuth uses username and password for Base64 encoding transmission, which is suitable for internal systems; 3. OAuth2 needs to obtain the token first through client_id and client_secret, and then bring the BearerToken in the request header; 4. In order to deal with the token expiration, the token management class can be encapsulated and automatically refreshed the token; in short, selecting the appropriate method according to the document and safely storing the key information is the key.

Explain Python assertions. Explain Python assertions. Jul 07, 2025 am 12:14 AM

Assert is an assertion tool used in Python for debugging, and throws an AssertionError when the condition is not met. Its syntax is assert condition plus optional error information, which is suitable for internal logic verification such as parameter checking, status confirmation, etc., but cannot be used for security or user input checking, and should be used in conjunction with clear prompt information. It is only available for auxiliary debugging in the development stage rather than substituting exception handling.

How to iterate over two lists at once Python How to iterate over two lists at once Python Jul 09, 2025 am 01:13 AM

A common method to traverse two lists simultaneously in Python is to use the zip() function, which will pair multiple lists in order and be the shortest; if the list length is inconsistent, you can use itertools.zip_longest() to be the longest and fill in the missing values; combined with enumerate(), you can get the index at the same time. 1.zip() is concise and practical, suitable for paired data iteration; 2.zip_longest() can fill in the default value when dealing with inconsistent lengths; 3.enumerate(zip()) can obtain indexes during traversal, meeting the needs of a variety of complex scenarios.

What are python iterators? What are python iterators? Jul 08, 2025 am 02:56 AM

InPython,iteratorsareobjectsthatallowloopingthroughcollectionsbyimplementing__iter__()and__next__().1)Iteratorsworkviatheiteratorprotocol,using__iter__()toreturntheiteratorand__next__()toretrievethenextitemuntilStopIterationisraised.2)Aniterable(like

What are Python type hints? What are Python type hints? Jul 07, 2025 am 02:55 AM

TypehintsinPythonsolvetheproblemofambiguityandpotentialbugsindynamicallytypedcodebyallowingdeveloperstospecifyexpectedtypes.Theyenhancereadability,enableearlybugdetection,andimprovetoolingsupport.Typehintsareaddedusingacolon(:)forvariablesandparamete

Python FastAPI tutorial Python FastAPI tutorial Jul 12, 2025 am 02:42 AM

To create modern and efficient APIs using Python, FastAPI is recommended; it is based on standard Python type prompts and can automatically generate documents, with excellent performance. After installing FastAPI and ASGI server uvicorn, you can write interface code. By defining routes, writing processing functions, and returning data, APIs can be quickly built. FastAPI supports a variety of HTTP methods and provides automatically generated SwaggerUI and ReDoc documentation systems. URL parameters can be captured through path definition, while query parameters can be implemented by setting default values ??for function parameters. The rational use of Pydantic models can help improve development efficiency and accuracy.

How to test an API with Python How to test an API with Python Jul 12, 2025 am 02:47 AM

To test the API, you need to use Python's Requests library. The steps are to install the library, send requests, verify responses, set timeouts and retry. First, install the library through pipinstallrequests; then use requests.get() or requests.post() and other methods to send GET or POST requests; then check response.status_code and response.json() to ensure that the return result is in compliance with expectations; finally, add timeout parameters to set the timeout time, and combine the retrying library to achieve automatic retry to enhance stability.

Setting Up and Using Python Virtual Environments Setting Up and Using Python Virtual Environments Jul 06, 2025 am 02:56 AM

A virtual environment can isolate the dependencies of different projects. Created using Python's own venv module, the command is python-mvenvenv; activation method: Windows uses env\Scripts\activate, macOS/Linux uses sourceenv/bin/activate; installation package uses pipinstall, use pipfreeze>requirements.txt to generate requirements files, and use pipinstall-rrequirements.txt to restore the environment; precautions include not submitting to Git, reactivate each time the new terminal is opened, and automatic identification and switching can be used by IDE.

See all articles