国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

ホームページ バックエンド開発 Python チュートリアル Seaborn プロットの選択が簡単に: データを効果的に視覚化する方法

Seaborn プロットの選択が簡単に: データを効果的に視覚化する方法

Nov 30, 2024 pm 01:40 PM

データの視覚化は、データを分析して表示するための最も強力なツールの 1 つです。 Seaborn は、Matplotlib 上に構築された Python ライブラリであり、有益で多様な視覚化を作成するための高レベルのインターフェイスを提供します。この記事では、適切な Seaborn プロットの選択、明確にするためのカスタマイズ、よくある落とし穴の回避について説明します。

適切なプロット タイプの選択が重要な理由

選択したプロットの種類は、データが洞察と情報をどのように効果的に表現するかに直接影響します。

  • 散布図は、変數間の相関関係を明らかにします。

  • ヒートマップは、大規(guī)模な比較を簡素化します。

間違ったプロット タイプを使用すると誤解が生じる可能性があり、間違ったビジュアライゼーションを選択したためにデータからの洞察が埋もれ、決して明らかにされないことがあります。

Seaborn プロット カテゴリを理解する

Seaborn プロットは、関係、分布、および カテゴリの 3 つの主要カテゴリに分類されます。それぞれの選び方と使い方をご紹介します。

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
出典:https://seaborn.pydata.org/_images/function_overview_8_0.png

1. 関係プロット

関係プロットは、2 つの変數 (通常は數値) 間の関係を視覚化します。 Seaborn は、散布図と折れ線グラフという 2 つの主要なタイプの関係プロットを提供します。これらのプロットは therelplot() 関數を使用して作成できます。

sns.relplot(
    data=tips,
    x="total_bill", y="tip", hue="smoker",>



<p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br>
source: seaborn documentation</p>

<p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br>
</p>

<pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri")
sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")

または次のように書くこともできます:

fmri = sns.load_dataset("fmri")
sns.lineplot(data=fmri, x="timepoint", y="signal")

結果は同じです。

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
出典: seaborn ドキュメント

散布図には個々のデータ ポイントが表示されるため、パターンや相関関係を簡単に識別できます。一方、折れ線グラフは、時間の経過に伴う傾向やカテゴリ全體の傾向を示すのに最適です。

2. 分布図

変數の分布を理解することは、データの分析またはモデル化における重要な最初のステップです。分布プロットは、単一変數の広がりまたは分散を明らかにするように設計されています。これらの視覚化により、次のような重要な質問にすぐに答えることができます: データはどの範囲をカバーしていますか?その中心的な傾向は何でしょうか?データは特定の方向に偏っていますか?

関係プロットと同様に、分布プロットは displot() 関數を使用して作成でき、種類パラメーターを指定して目的のプロット タイプを選択します。あるいは、histplot()、kdeplot()、ecdfplot()、rugplot() などの関數を直接使用して、特定の分布を視覚化することもできます。

histplot() 関數は、頻度分布の視覚化に優(yōu)れています。

sns.relplot(
    data=tips,
    x="total_bill", y="tip", hue="smoker",>



<p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br>
source: seaborn documentation</p>

<p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br>
</p>

<pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri")
sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
出典:seaborn ドキュメント

kdeplot() は滑らかな分布曲線を表示するのに適していますが、ecdfplot() は累積比率を強調します。 Rugplot() は、生のデータ ポイントに詳細なマーカーを追加し、他の視覚化をより詳細に強化します。

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

Seaborn は、heatmap() などのツールを使用した二変量分布の視覚化もサポートしています。ヒートマップは、相関行列を示したり、比較したりする場合に特に効果的です。

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

3. カテゴリプロット

カテゴリ プロットは、カテゴリに分類されたデータを視覚化するように設計されています。これらのプロットを作成する一般的なアプローチは、catplot() 関數を使用し、kind パラメーターを指定して目的のプロット タイプを選択することです。これらの區(qū)畫は 3 つの主要なファミリーに分類されます。

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
カテゴリ プロットの適切なタイプの選択は、回答したい特定の質問によって異なります。これらのプロットは、カテゴリ データを分析するための複數の視點を提供します。

- カテゴリ散布図
これらのプロットには、カテゴリ內の個々のデータ ポイントが表示され、パターンや分布を特定するのに役立ちます。例には、stripplot() や swarmplot() が含まれます。

fmri = sns.load_dataset("fmri")
sns.lineplot(data=fmri, x="timepoint", y="signal")

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
出典: seaborn ドキュメント

- カテゴリ分布プロット

これらのプロットはカテゴリ內のデータ分布を要約し、変動性、広がり、中心的な傾向についての洞察を提供します。例には、boxplot()、violinplot()、boxenplot() などがあります。

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

- カテゴリ推定プロット

これらのプロットは、集計された推定値 (平均など) を計算し、ばらつきや信頼區(qū)間を示す誤差バーを含みます。例には、barplot()、pointplot()、countplot() などがあります。

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

適切な Seaborn プロットを選択する方法

プロットを作成する前に、次の質問を自問してください:

データはカテゴリ、數値、またはその両方ですか?

関係、分布、または比較を調査していますか?

データセットのサイズとスケールはどれくらいですか?

データを知ることで、最も適切な視覚化ツールが得られます。以下のスキーマは Kaggle からのもので、データの種類に基づいてグラフを選択する方法を示しています。

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively
出典: kaggle

これを実用化するために、実世界のデータを使ってみましょう。學習時間、出席狀況、保護者の參加、リソースへのアクセス、課外活動、睡眠時間、過去のスコア、モチベーション レベル、インターネット アクセス、個別指導セッション、世帯収入、教師の質、學校などの特徴を含む 20 列を含む Kaggle のデータセットを考えてみましょう。タイプ、仲間からの影響、身體活動、學習障害、親の教育レベル、自宅からの距離、性別、試験スコア。

  1. データを理解する データを理解するには、データセット內の変數のタイプを分析することから始めます。數値変數は関係プロットや分布プロットに最適ですが、カテゴリ変數はグループ化や比較に適しています。たとえば、折れ線グラフを使用して、出席狀況に基づいて數學の成績の傾向を分析できます。同様に、ヒストプロットを利用して睡眠時間の分布を調べることができ、ほとんどの生徒が十分な休息をとれているかどうかを判斷するのに役立ちます。
sns.relplot(
    data=tips,
    x="total_bill", y="tip", hue="smoker",>



<p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br>
source: seaborn documentation</p>

<p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br>
</p>

<pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri")
sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

fmri = sns.load_dataset("fmri")
sns.lineplot(data=fmri, x="timepoint", y="signal")

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

  1. 目標を定義する どのような洞察を伝えたいかを尋ねて、目的を決定します。グループを比較したいですか?棒グラフや箱ひげ図などのカテゴリプロットを選択します。関係を探ることに興味がありますか?散布図などの関係プロットは優(yōu)れた選択肢です。変動性を理解したいですか? histplot のような分布プロットを使用します。たとえば、散布図は、各點が観測値を表す 2 つの數値変數間の関係を効果的に表示します。これにより、相関関係、クラスター、外れ値を簡単に見つけることができます。學習時間が試験のスコアにどのような影響を與えるかを視覚化すると、より多くの學習時間がより高いスコアと相関するかどうかが明らかになります。
sns.displot(penguins, x="flipper_length_mm", hue="sex", multiple="dodge")

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

  1. プロットをデータと目標に合わせる データと分析目的に適切なプロットを選択することが重要です。適切な視覚化により、有意義な洞察を効果的に抽出できます。たとえば、折れ線プロットは、ヒストグラムと比較して、時間の経過に伴う傾向を観察するのに適しています。間違ったプロットを使用すると、重要なパターンや洞察が曖昧になり、豊富なデータセットであっても役に立たなくなる可能性があります。たとえば、棒グラフは、親の関與のさまざまなレベルにわたる試験の平均得點を比較するのに最適です。このプロットは、カテゴリ全體の數値変數の平均 (またはその他の要約統(tǒng)計量) を強調表示するため、高レベルの比較に最適です。
sns.relplot(
    data=tips,
    x="total_bill", y="tip", hue="smoker",>



<p><img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" class="lazy" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br>
source: seaborn documentation</p>

<p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br>
</p>

<pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri")
sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

Seaborn プロットをカスタマイズするためのヒント

plt.title()、plt.xlabel()、plt.ylabel() などの関數を使用してタイトルとラベルを追加すると、ビジュアライゼーションの明瞭さが向上します。カテゴリ ディメンションを組み込むには、Seaborn の hue 屬性を利用します。これにより、データセット內の特定の列に基づいてデータ ポイントを區(qū)別できるようになります。 set_palette() 関數を使用して、coolwarm、husl、Set2 などのパレットで配色をカスタマイズします。さらに、 sns.set_theme() を使用してスタイルやサイズを調整し、plt.figure(figsize=(width, height)) を使用して図の寸法を定義することで、データ ポイントを區(qū)別します。

避けるべきよくある落とし穴

データの視覚化を通じて洞察を効果的に伝達するには、十分な情報を提供することとプロットの過密を避けることの間のバランスを取ることが重要です。グラフに過剰なデータ ポイントを追加すると、見る人が圧倒されてしまう可能性がありますが、詳細が不十分だと混亂が生じる可能性があります。常に明確な軸ラベルと凡例を含め、視覚化で強調したい重要な洞察が強調されていることを確認してください。

もう 1 つの一般的な問題は、誤解を招く視覚化の作成です。これを防ぐには、データを表すために軸が適切にスケーリングされていることを確認してください。

Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively

結論

適切な Seaborn プロットを選択することは、データの理解を強化し、洞察を効果的に伝えるための重要なステップです。適切な視覚化により、隠されたままのパターン、関係、傾向を明らかにすることができます。プロット タイプをデータ構造や分析目標 (分布、関係性、比較の調査など) に合わせることで、ストーリーテリングの明確さと正確さを確保できます。

データの視覚化は科學であると同時に蕓術でもあります。新しい視點を発見したり、洞察を洗練したりするために、さまざまな Seaborn プロットを遠慮なく試してください。練習と創(chuàng)造力により、Seaborn の可能性を最大限に活用して生データを魅力的なビジュアル ナラティブに変換できるようになります。

以上がSeaborn プロットの選択が簡単に: データを効果的に視覚化する方法の詳細內容です。詳細については、PHP 中國語 Web サイトの他の関連記事を參照してください。

このウェブサイトの聲明
この記事の內容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰屬します。このサイトは、それに相當する法的責任を負いません。盜作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undress AI Tool

Undress AI Tool

脫衣畫像を無料で

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード寫真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

寫真から衣服を削除するオンライン AI ツール。

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中國語版

SublimeText3 中國語版

中國語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統(tǒng)合開発環(huán)境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Pythonクラスの多型 Pythonクラスの多型 Jul 05, 2025 am 02:58 AM

Pythonオブジェクト指向プログラミングのコアコンセプトであるPythonは、「1つのインターフェイス、複數の実裝」を指し、異なるタイプのオブジェクトの統(tǒng)一処理を可能にします。 1。多型は、メソッドの書き換えを通じて実裝されます。サブクラスは、親クラスの方法を再定義できます。たとえば、Animal ClassのSOCK()方法は、犬と貓のサブクラスに異なる実裝を持っています。 2.多型の実用的な用途には、グラフィカルドローイングプログラムでdraw()メソッドを均一に呼び出すなど、コード構造を簡素化し、スケーラビリティを向上させる、ゲーム開発における異なる文字の共通の動作の処理などが含まれます。 3. Pythonの実裝多型を満たす必要があります:親クラスはメソッドを定義し、子クラスはメソッドを上書きしますが、同じ親クラスの継承は必要ありません。オブジェクトが同じ方法を実裝する限り、これは「アヒル型」と呼ばれます。 4.注意すべきことには、メンテナンスが含まれます

Pythonのリストスライスとは何ですか? Pythonのリストスライスとは何ですか? Jun 29, 2025 am 02:15 AM

listslicinginpythonextractsoristusingindices.1.itusesthesyntaxlist [start:end:step]、wherestartisinclusive、endisexclusive、andstepdefinestheinterval.2.ifstartorerendareomitte、pythondefaultStotheBeginedoftothemonist.3.commonuseScludette

python `@classmethod`デコレーターが説明しました python `@classmethod`デコレーターが説明しました Jul 04, 2025 am 03:26 AM

クラスメソッドは、@ClassMethodデコレーターを介してPythonで定義されるメソッドです。最初のパラメーターはクラス自體(CLS)で、クラス狀態(tài)へのアクセスまたは変更に使用されます。特定のインスタンスではなく、クラス全體に影響を與えるクラスまたはインスタンスを通じて呼び出すことができます。たとえば、Personクラスでは、show_count()メソッドは作成されたオブジェクトの數を數えます。クラスメソッドを定義するときは、@ClassMethodデコレータを使用して、Change_Var(new_Value)メソッドなどの最初のパラメーターCLSに名前を付けてクラス変數を変更する必要があります。クラス方法は、インスタンスメソッド(自己パラメーター)および靜的メソッド(自動パラメーターなし)とは異なり、工場の方法、代替コンストラクター、およびクラス変數の管理に適しています。一般的な用途には以下が含まれます。

Python関數引數とパラメーター Python関數引數とパラメーター Jul 04, 2025 am 03:26 AM

パラメーターは関數を定義するときはプレースホルダーであり、引數は呼び出し時に特定の値が渡されます。 1。位置パラメーターを順番に渡す必要があり、順序が正しくない場合は結果のエラーにつながります。 2。キーワードパラメーターはパラメーター名で指定されており、順序を変更して読みやすさを向上させることができます。 3.デフォルトのパラメーター値は、複製コードを避けるために定義されたときに割り當てられますが、変數オブジェクトはデフォルト値として避ける必要があります。 4. Argsおよび *Kwargsは、不確実な數のパラメーターを処理でき、一般的なインターフェイスまたはデコレータに適していますが、読みやすさを維持するためには注意して使用する必要があります。

Pythonジェネレーターと反復器を説明します。 Pythonジェネレーターと反復器を説明します。 Jul 05, 2025 am 02:55 AM

イテレータは、__iter __()および__next __()メソッドを実裝するオブジェクトです。ジェネレーターは、単純化されたバージョンのイテレーターです。これは、収量キーワードを介してこれらのメソッドを自動的に実裝しています。 1. Iteratorは、次の()を呼び出すたびに要素を返し、要素がなくなると停止例外をスローします。 2。ジェネレーターは関數定義を使用して、オンデマンドでデータを生成し、メモリを保存し、無限シーケンスをサポートします。 3。既存のセットを処理するときに反復器を使用すると、大きなファイルを読み取るときに行ごとにロードするなど、ビッグデータや怠zyな評価を動的に生成するときにジェネレーターを使用します。注:リストなどの反復オブジェクトは反復因子ではありません。イテレーターがその端に達した後、それらは再作成する必要があり、発電機はそれを一度しか通過できません。

Pythonの2つのリストを組み合わせる方法は? Pythonの2つのリストを組み合わせる方法は? Jun 30, 2025 am 02:04 AM

2つのリストをマージするには多くの方法があり、正しい方法を選択すると効率を改善できます。 1。List1 List2などの新しいリストを生成するには、番號スプライシングを使用します。 2。使用= list1 = list2などの元のリストを変更します。 3。list1.extend(list2)などの元のリストで操作するには、extend()メソッドを使用します。 4. [List1、*List2]など、複數のリストの柔軟な組み合わせや要素の追加をサポートする[List1、*List2]など、[Python3.5]を解き、マージする(python3.5)を使用してマージします。さまざまな方法がさまざまなシナリオに適しているため、元のリストとPythonバージョンを変更するかどうかに基づいて選択する必要があります。

PythonでAPI認証を処理する方法 PythonでAPI認証を処理する方法 Jul 13, 2025 am 02:22 AM

API認証を扱うための鍵は、認証方法を正しく理解して使用することです。 1。Apikeyは、通常、リクエストヘッダーまたはURLパラメーターに配置されている最も単純な認証方法です。 2。BasicAuthは、內部システムに適したBase64エンコード送信にユーザー名とパスワードを使用します。 3。OAUTH2は、最初にclient_idとclient_secretを介してトークンを取得し、次にリクエストヘッダーにbearertokenを持ち込む必要があります。 4。トークンの有効期限に対処するために、トークン管理クラスをカプセル化し、トークンを自動的に更新できます。要するに、文書に従って適切な方法を選択し、重要な情報を安全に保存することが重要です。

Python Magic MethodsまたはDunder Methodとは何ですか? Python Magic MethodsまたはDunder Methodとは何ですか? Jul 04, 2025 am 03:20 AM

PythonのMagicMethods(またはDunder Methods)は、オブジェクトの動作を定義するために使用される特別な方法であり、二重のアンダースコアで始まり、終了します。 1.オブジェクトは、追加、比較、文字列表現などの組み込み操作に応答できるようにします。 2.一般的なユースケースには、オブジェクトの初期化と表現(__init__、__Repr__、__str__)、算術操作(__ add__、__sub__、__mul__)、および比較操作(__eq__、___lt__)が含まれます。 3。それを使用するときは、彼らの行動が期待を満たしていることを確認してください。たとえば、__Repr__はリファクタリング可能なオブジェクトの式を返す必要があり、算術メソッドは新しいインスタンスを返す必要があります。 4.過剰使用または混亂を招くことは避ける必要があります。

See all articles