


Membina Platform Pengurusan Alat Ejen: Panduan Seni Bina Praktikal
Nov 28, 2024 pm 06:29 PMArtikel ini akan membimbing anda melalui mereka bentuk dan melaksanakan platform pengurusan alat Ejen AI peringkat perusahaan. Sama ada anda sedang membina sistem Ejen AI atau berminat dengan platform pengurusan alat, anda akan menemui corak reka bentuk praktikal dan penyelesaian teknikal di sini.
Mengapa Kita Memerlukan Platform Pengurusan Alat?
Bayangkan sistem Ejen AI anda perlu mengendalikan berdozen atau bahkan ratusan alat yang berbeza:
- Bagaimana anda mengurus pendaftaran dan penemuan alat?
- Bagaimanakah anda mengawal kebenaran akses?
- Bagaimanakah anda menjejaki setiap penggunaan alat?
- Bagaimana anda memantau kesihatan sistem?
Di situlah platform pengurusan alat masuk.
Reka Bentuk Ciri Teras
1. Pusat Pendaftaran Alat
Fikirkan pusat pendaftaran alat sebagai sistem pengindeksan perpustakaan - ia menguruskan "maklumat identiti" semua alatan.
1.1 Pengurusan Maklumat Asas
# Tool registration example class ToolRegistry: def register_tool(self, tool_info: dict): """ Register a new tool tool_info = { "name": "Text Translation Tool", "id": "translate_v1", "description": "Supports multi-language text translation", "version": "1.0.0", "api_schema": {...} } """ # Validate required information self._validate_tool_info(tool_info) # Store in database self.db.save_tool(tool_info)
1.2 Reka Bentuk Pangkalan Data
-- Core table structure CREATE TABLE tools ( id VARCHAR(50) PRIMARY KEY, name VARCHAR(100) NOT NULL, description TEXT, version VARCHAR(20), api_schema JSON, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP );
2. Mekanisme Pemuatan Dinamik
Fikirkan alatan seperti apl pada telefon anda - kami perlu boleh memasang, mengemas kini dan menyahpasangnya pada bila-bila masa.
class ToolLoader: def __init__(self): self._loaded_tools = {} def load_tool(self, tool_id: str): """Dynamically load a tool""" if tool_id in self._loaded_tools: return self._loaded_tools[tool_id] tool_info = self.registry.get_tool(tool_id) tool = self._create_tool_instance(tool_info) self._loaded_tools[tool_id] = tool return tool
3. Kawalan Akses
Seperti memberikan kad akses yang berbeza kepada pekerja, kita perlu mengawal siapa yang boleh menggunakan alatan yang mana.
class ToolAccessControl: def check_permission(self, user_id: str, tool_id: str) -> bool: """Check if user has permission to use a tool""" user_role = self.get_user_role(user_id) tool_permissions = self.get_tool_permissions(tool_id) return user_role in tool_permissions
4. Pengesanan Panggilan
Seperti menjejaki penghantaran pakej, kita perlu mengetahui keseluruhan proses setiap panggilan alat.
class ToolTracer: def trace_call(self, tool_id: str, params: dict): span = self.tracer.start_span( name=f"tool_call_{tool_id}", attributes={ "tool_id": tool_id, "params": json.dumps(params), "timestamp": time.time() } ) return span
5. Pemantauan dan Makluman
Sistem memerlukan mekanisme "pemeriksaan kesihatan" untuk mengesan dan menangani isu dengan segera.
class ToolMonitor: def collect_metrics(self, tool_id: str): """Collect tool usage metrics""" metrics = { "qps": self._calculate_qps(tool_id), "latency": self._get_avg_latency(tool_id), "error_rate": self._get_error_rate(tool_id) } return metrics def check_alerts(self, metrics: dict): """Check if alerts need to be triggered""" if metrics["error_rate"] > 0.1: # Error rate > 10% self.send_alert("High Error Rate Alert")
Contoh Dunia Nyata
Mari kita lihat senario penggunaan konkrit:
# Initialize platform platform = ToolPlatform() # Register new tool platform.registry.register_tool({ "id": "weather_v1", "name": "Weather Query Tool", "description": "Get weather information for major cities worldwide", "version": "1.0.0", "api_schema": { "input": { "city": "string", "country": "string" }, "output": { "temperature": "float", "weather": "string" } } }) # Use tool async def use_weather_tool(city: str): # Permission check if not platform.access_control.check_permission(user_id, "weather_v1"): raise PermissionError("No permission to use this tool") # Load tool tool = platform.loader.load_tool("weather_v1") # Call tracing with platform.tracer.trace_call("weather_v1", {"city": city}): result = await tool.query_weather(city) # Collect metrics platform.monitor.collect_metrics("weather_v1") return result
Amalan Terbaik
-
Reka Bentuk Modular
- Pastikan komponen bebas
- Tentukan antara muka yang jelas
- Mudah dipanjangkan
-
Pengoptimuman Prestasi
- Gunakan caching untuk mengurangkan masa memuatkan
- Pemprosesan async untuk keselarasan yang lebih baik
- Pemprosesan kelompok untuk kecekapan
-
Toleransi Kesalahan
- Melaksanakan degradasi anggun
- Tambahkan mekanisme cuba semula
- Pastikan sandaran data
-
Langkah Keselamatan
- Pengesahan parameter
- Kawalan akses
- Penyulitan data
Ringkasan
Platform pengurusan alat yang hebat hendaklah:
- Mudah digunakan
- Boleh Dipercayai
- Berprestasi tinggi
- Selamat
Dengan corak reka bentuk yang diperkenalkan dalam artikel ini, anda boleh membina platform pengurusan alat yang komprehensif yang menyediakan sokongan permintaan alat yang mantap untuk sistem Ejen AI.
Atas ialah kandungan terperinci Membina Platform Pengurusan Alat Ejen: Panduan Seni Bina Praktikal. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Python's Unittest and Pytest adalah dua kerangka ujian yang digunakan secara meluas yang memudahkan penulisan, penganjuran dan menjalankan ujian automatik. 1. Kedua -duanya menyokong penemuan automatik kes ujian dan menyediakan struktur ujian yang jelas: Unittest mentakrifkan ujian dengan mewarisi kelas ujian dan bermula dengan ujian \ _; Pytest lebih ringkas, hanya memerlukan fungsi bermula dengan ujian \ _. 2. Mereka semua mempunyai sokongan dakwaan terbina dalam: Unittest menyediakan kaedah AssertEqual, AssertTrue dan lain-lain, manakala PYTest menggunakan pernyataan menegaskan yang dipertingkatkan untuk memaparkan butiran kegagalan secara automatik. 3. Semua mempunyai mekanisme untuk mengendalikan penyediaan ujian dan pembersihan: un

Pythonisidealfordataanalysisysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationswithfast, multi-dimensiArarraySandvectorizedoperationsLikenp.sqrt ()

Pengaturcaraan Dinamik (DP) mengoptimumkan proses penyelesaian dengan memecahkan masalah kompleks ke dalam subproblem yang lebih mudah dan menyimpan hasilnya untuk mengelakkan pengiraan berulang. Terdapat dua kaedah utama: 1. Top-down (Hafalan): Recursif menguraikan masalah dan menggunakan cache untuk menyimpan hasil pertengahan; 2. Bottom-Up (Jadual): Bangun secara beransur-ansur dari keadaan asas. Sesuai untuk senario di mana nilai maksimum/minimum, penyelesaian optimum atau subproblem yang bertindih diperlukan, seperti urutan Fibonacci, masalah backpacking, dan lain -lain.

Untuk melaksanakan iterator tersuai, anda perlu menentukan kaedah __iter__ dan __Next__ di dalam kelas. ① Kaedah __iter__ mengembalikan objek iterator itu sendiri, biasanya diri sendiri, bersesuaian dengan persekitaran berulang seperti untuk gelung; ② Kaedah __Next__ mengawal nilai setiap lelaran, mengembalikan elemen seterusnya dalam urutan, dan apabila tidak ada lagi item, pengecualian hentian harus dibuang; ③ Status mesti dikesan dengan betul dan keadaan penamatan mesti ditetapkan untuk mengelakkan gelung tak terhingga; ④ Logik kompleks seperti penapisan talian fail, dan perhatikan pembersihan sumber dan pengurusan memori; ⑤ Untuk logik mudah, anda boleh mempertimbangkan menggunakan hasil fungsi penjana sebaliknya, tetapi anda perlu memilih kaedah yang sesuai berdasarkan senario tertentu.

Trend masa depan dalam Python termasuk pengoptimuman prestasi, jenis yang lebih kuat, peningkatan runtime alternatif, dan pertumbuhan berterusan bidang AI/ML. Pertama, Cpython terus mengoptimumkan, meningkatkan prestasi melalui masa permulaan yang lebih cepat, pengoptimuman panggilan fungsi dan operasi integer yang dicadangkan; Kedua, jenis petikan sangat terintegrasi ke dalam bahasa dan alat untuk meningkatkan pengalaman keselamatan dan pembangunan kod; Ketiga, runtime alternatif seperti Pyscript dan Nuitka menyediakan fungsi baru dan kelebihan prestasi; Akhirnya, bidang AI dan Sains Data terus berkembang, dan perpustakaan yang muncul mempromosikan pembangunan dan integrasi yang lebih cekap. Trend ini menunjukkan bahawa Python sentiasa menyesuaikan diri dengan perubahan teknologi dan mengekalkan kedudukan utama.

Modul soket Python adalah asas pengaturcaraan rangkaian, menyediakan fungsi komunikasi rangkaian peringkat rendah, sesuai untuk membina aplikasi klien dan pelayan. Untuk menyediakan pelayan TCP asas, anda perlu menggunakan socket.socket () untuk membuat objek, mengikat alamat dan port, panggilan. Listen () untuk mendengar sambungan, dan menerima sambungan klien melalui .accept (). Untuk membina klien TCP, anda perlu membuat objek soket dan panggilan .Connect () untuk menyambung ke pelayan, kemudian gunakan .sendall () untuk menghantar data dan .recv () untuk menerima respons. Untuk mengendalikan pelbagai pelanggan, anda boleh menggunakan 1. Threads: Mulakan benang baru setiap kali anda menyambung; 2. Asynchronous I/O: Sebagai contoh, Perpustakaan Asyncio dapat mencapai komunikasi yang tidak menyekat. Perkara yang perlu diperhatikan

Polimorfisme adalah konsep teras dalam pengaturcaraan berorientasikan objek Python, merujuk kepada "satu antara muka, pelbagai pelaksanaan", yang membolehkan pemprosesan bersatu pelbagai jenis objek. 1. Polimorfisme dilaksanakan melalui penulisan semula kaedah. Subkelas boleh mentakrifkan semula kaedah kelas induk. Sebagai contoh, kaedah bercakap () kelas haiwan mempunyai pelaksanaan yang berbeza dalam subkelas anjing dan kucing. 2. Penggunaan praktikal polimorfisme termasuk memudahkan struktur kod dan meningkatkan skalabilitas, seperti memanggil kaedah cabutan () secara seragam dalam program lukisan grafik, atau mengendalikan tingkah laku umum watak -watak yang berbeza dalam pembangunan permainan. 3. Polimorfisme pelaksanaan Python perlu memenuhi: Kelas induk mentakrifkan kaedah, dan kelas kanak -kanak mengatasi kaedah, tetapi tidak memerlukan warisan kelas induk yang sama. Selagi objek melaksanakan kaedah yang sama, ini dipanggil "jenis itik". 4. Perkara yang perlu diperhatikan termasuk penyelenggaraan

Jawapan teras kepada pengirim senarai Python adalah menguasai sintaks [Start: End: Step] dan memahami kelakuannya. 1. Format asas pengirim senarai adalah senarai [Mula: akhir: langkah], di mana permulaan adalah indeks permulaan (termasuk), akhir adalah indeks akhir (tidak termasuk), dan langkah adalah saiz langkah; 2. Omit Mula secara lalai bermula dari 0, endek akhir secara lalai hingga akhir, omite langkah secara lalai kepada 1; 3. Gunakan my_list [: n] untuk mendapatkan item n pertama, dan gunakan my_list [-n:] untuk mendapatkan item n yang terakhir; 4. Gunakan langkah untuk melangkau unsur -unsur, seperti my_list [:: 2] untuk mendapatkan angka, dan nilai langkah negatif dapat membalikkan senarai; 5. Kesalahpahaman biasa termasuk indeks akhir tidak
