


[CVHSV lwn RGB: Memahami dan Memanfaatkan HSV untuk Pemprosesan Imej
Dec 19, 2024 am 10:33 AMDalam siaran sebelumnya, kami meneroka asas bekerja dengan imej RGB dalam OpenCV, termasuk memplot dan melaraskan kecerahan dan kontras. Walaupun ruang warna RGB sesuai untuk paparan komputer, kerana ia mewakili warna dari segi keamatan cahaya yang dipancarkan oleh skrin, ia tidak sejajar dengan cara manusia melihat warna di dunia semula jadi. Di sinilah HSV (Hue, Saturation, Value) melangkah masuk—ruang warna yang direka bentuk untuk mewakili warna dengan cara yang lebih dekat dengan persepsi manusia.
Dalam siaran ini, kami akan menyelami HSV, memahami komponennya, meneroka aplikasinya dan mempelajari beberapa helah hebat untuk meningkatkan imej.
Apakah itu HSV?
HSV bermaksud Hue, Saturation dan Value:
- Hue (H): Ini merujuk kepada jenis warna—merah, hijau, biru, dll. Walaupun secara tradisional diukur dalam darjah pada spektrum bulat (0°–360°), dalam OpenCV, Hue diskalakan kepada 0 –179 untuk dimuatkan dalam integer 8-bit. Berikut ialah pemetaan:
- 0 (atau berhampirannya) masih mewakili merah.
- 60–89 sepadan dengan hijau.
- 120–149 sepadan dengan biru.
- 140–179 dibalut kembali menjadi merah, melengkapkan spektrum bulat.
Ketepuan (S): Ini mentakrifkan keamatan atau ketulenan warna: Warna tepu sepenuhnya tidak mengandungi kelabu dan bersemangat, Warna yang kurang tepu kelihatan lebih tercuci.
Nilai (V): Selalunya dirujuk sebagai kecerahan, ia mengukur kecerahan atau kegelapan Dengan mengasingkan komponen ini, HSV menjadikannya lebih mudah untuk menganalisis dan memanipulasi imej, terutamanya untuk tugas seperti pengesanan warna atau peningkatan. warnanya.
Untuk memahami perkara ini dengan lebih baik, pukulan plot adalah persembahan yang baik tentang nilai-nilai dalam ruang warna
Menukar Imej kepada HSV dalam OpenCV
Menukar imej kepada HSV dalam OpenCV adalah mudah dengan fungsi cv2.cvtColor(). Jom tengok:
import cv2 import matplotlib.pyplot as plt image = cv2.imread('./test.png') plt.figure(figsize=(10,10)) plt.subplot(1,2,1) plt.imshow(image[:,:,::-1]) #plot as RGB plt.title("RGB View") hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV) plt.subplot(1,2,2) plt.imshow(hsv) plt.title("HSV View") plt.tight_layout() plt.show()
Pada pandangan pertama, plot HSV mungkin kelihatan pelik—hampir seperti makhluk asing. Ini kerana komputer anda cuba mewakili HSV sebagai imej RGB, walaupun komponen HSV (terutamanya Hue) tidak dipetakan secara langsung kepada nilai RGB. Contohnya:
- Hue (H): Diwakili sebagai sudut, ia berjulat dari 0 hingga 179 dalam OpenCV (bukan 0 hingga 255 seperti saluran RGB). Ini menyebabkan saluran Hue kelihatan kebanyakannya berwarna biru dalam plot berasaskan RGB.
Untuk contoh berikut seterusnya kami tidak akan menggunakan imej profil tetapi imej yang lebih gelap yang dijana dengan model gen imej Flux ai. kerana ia memberikan kes pengguna HSV yang lebih baik daripada imej profil, kerana kita dapat melihat kesannya dengan lebih baik
Memahami HSV Melalui Histogram
Untuk lebih memahami perbezaan antara RGB dan HSV, mari kita plot histogram untuk setiap saluran. Ini kodnya:
import cv2 import matplotlib.pyplot as plt image = cv2.imread('./test.png') plt.figure(figsize=(10,10)) plt.subplot(1,2,1) plt.imshow(image[:,:,::-1]) #plot as RGB plt.title("RGB View") hsv= cv2.cvtColor(image, cv2.COLOR_RGB2HSV) plt.subplot(1,2,2) plt.imshow(hsv) plt.title("HSV View") plt.tight_layout() plt.show()
Daripada histogram, anda boleh melihat bagaimana saluran HSV berbeza daripada RGB. Perhatikan saluran Hue dalam HSV, yang mempunyai nilai antara 0 dan 179, mewakili kawasan warna yang berbeza, manakala Ketepuan dan Nilai mengendalikan keamatan dan kecerahan.
Memvisualisasikan Hue, Ketepuan dan Nilai
Sekarang, mari pecahkan imej HSV kepada komponen individunya untuk lebih memahami perkara yang diwakili oleh setiap saluran:
# Plot the histograms plt.figure(figsize=(10, 6)) # RGB Histogram plt.subplot(1, 2, 1) for i, color in enumerate(['r', 'g', 'b']): plt.hist(image[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step') plt.xlim([0, 256]) plt.title("RGB Histogram") # HSV Histogram plt.subplot(1, 2, 2) for i, color in enumerate(['r', 'g', 'b']): plt.hist(hsv[:, :, i].ravel(), 256, [0, 256], color=color, histtype='step') plt.xlim([0, 256]) plt.title("HSV Histogram") plt.show()
- Hue: Memaparkan perbezaan warna yang jelas, menyerlahkan warna dominan dalam imej.
- Ketepuan: Kawasan yang lebih terang mewakili warna yang terang, manakala kawasan yang lebih gelap menunjukkan rona kelabu yang lebih diredam.
- Nilai: Menyerlahkan taburan kecerahan, dengan kawasan yang cukup terang kelihatan lebih cerah.
Helah dengan HSV
1. Peningkatan Kecerahan (Penyamaan Nilai)
Untuk imej dengan pencahayaan tidak sekata, menyamakan saluran Nilai boleh menjadikan kawasan yang lebih gelap lebih kelihatan sambil memberikan kesan "cahaya" kepada kawasan yang lebih terang.
# Plot the individual HSV channels plt.figure(figsize=(10, 6)) plt.subplot(1, 3, 1) plt.imshow(hsv[:, :, 0], cmap='hsv') # Hue plt.title("Hue") plt.subplot(1, 3, 2) plt.imshow(hsv[:, :, 1], cmap='gray') # Saturation plt.title("Saturation") plt.subplot(1, 3, 3) plt.imshow(hsv[:, :, 2], cmap='gray') # Value plt.title("Value") plt.tight_layout() plt.show()
2. Peningkatan Warna (Penyamaan Ketepuan)
Meningkatkan saluran Ketepuan menjadikan warna dalam imej lebih jelas dan bersemangat.
equ = cv2.equalizeHist(hsv[:, :, 2]) # Equalize the Value channel new_hsv = cv2.merge((hsv[:, :, 0], hsv[:, :, 1], equ)) new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR) # Display results plt.figure(figsize=(10, 6)) plt.subplot(1, 2, 1) plt.imshow(image) plt.title("Original Image") plt.subplot(1, 2, 2) plt.imshow(new_image) plt.title("Brightness Enhanced") plt.tight_layout() plt.show()
3. Penapisan Warna (Merah Mengasingkan)
Menggunakan saluran Hue, kami boleh mengasingkan warna tertentu. Contohnya, untuk mengekstrak rona merah:
equ = cv2.equalizeHist(hsv[:, :, 1]) # Equalize the Saturation channel new_hsv = cv2.merge((hsv[:, :, 0], equ, hsv[:, :, 2])) new_image = cv2.cvtColor(new_hsv, cv2.COLOR_HSV2BGR) # Display results plt.figure(figsize=(10, 6)) plt.subplot(1, 2, 1) plt.imshow(image) plt.title("Original Image") plt.subplot(1, 2, 2) plt.imshow(new_image) plt.title("Color Enhanced") plt.tight_layout() plt.show()
Teknik ini sangat berguna untuk tugas seperti pengesanan objek, pembahagian warna atau juga kesan artistik.
Kesimpulan
Ruang warna HSV menawarkan cara yang serba boleh dan intuitif untuk menganalisis dan memanipulasi imej. Dengan mengasingkan warna (Hue), keamatan (Tepu) dan kecerahan (Nilai), HSV memudahkan tugas seperti penapisan warna, peningkatan dan pembahagian. Walaupun RGB sesuai untuk paparan, HSV membuka kemungkinan untuk pemprosesan imej kreatif dan analitikal.
Apakah helah kegemaran anda dengan HSV? Kongsi pendapat anda di bawah, dan mari kita terokai dunia warna yang meriah ini bersama-sama!
Versi ini menggabungkan aliran lancar, penjelasan terperinci dan pemformatan yang konsisten untuk meningkatkan kebolehbacaan dan kefahaman.
Atas ialah kandungan terperinci [CVHSV lwn RGB: Memahami dan Memanfaatkan HSV untuk Pemprosesan Imej. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Python's Unittest and Pytest adalah dua kerangka ujian yang digunakan secara meluas yang memudahkan penulisan, penganjuran dan menjalankan ujian automatik. 1. Kedua -duanya menyokong penemuan automatik kes ujian dan menyediakan struktur ujian yang jelas: Unittest mentakrifkan ujian dengan mewarisi kelas ujian dan bermula dengan ujian \ _; Pytest lebih ringkas, hanya memerlukan fungsi bermula dengan ujian \ _. 2. Mereka semua mempunyai sokongan dakwaan terbina dalam: Unittest menyediakan kaedah AssertEqual, AssertTrue dan lain-lain, manakala PYTest menggunakan pernyataan menegaskan yang dipertingkatkan untuk memaparkan butiran kegagalan secara automatik. 3. Semua mempunyai mekanisme untuk mengendalikan penyediaan ujian dan pembersihan: un

Pythonisidealfordataanalysisysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationswithfast, multi-dimensiArarraySandvectorizedoperationsLikenp.sqrt ()

Pengaturcaraan Dinamik (DP) mengoptimumkan proses penyelesaian dengan memecahkan masalah kompleks ke dalam subproblem yang lebih mudah dan menyimpan hasilnya untuk mengelakkan pengiraan berulang. Terdapat dua kaedah utama: 1. Top-down (Hafalan): Recursif menguraikan masalah dan menggunakan cache untuk menyimpan hasil pertengahan; 2. Bottom-Up (Jadual): Bangun secara beransur-ansur dari keadaan asas. Sesuai untuk senario di mana nilai maksimum/minimum, penyelesaian optimum atau subproblem yang bertindih diperlukan, seperti urutan Fibonacci, masalah backpacking, dan lain -lain.

Untuk melaksanakan iterator tersuai, anda perlu menentukan kaedah __iter__ dan __Next__ di dalam kelas. ① Kaedah __iter__ mengembalikan objek iterator itu sendiri, biasanya diri sendiri, bersesuaian dengan persekitaran berulang seperti untuk gelung; ② Kaedah __Next__ mengawal nilai setiap lelaran, mengembalikan elemen seterusnya dalam urutan, dan apabila tidak ada lagi item, pengecualian hentian harus dibuang; ③ Status mesti dikesan dengan betul dan keadaan penamatan mesti ditetapkan untuk mengelakkan gelung tak terhingga; ④ Logik kompleks seperti penapisan talian fail, dan perhatikan pembersihan sumber dan pengurusan memori; ⑤ Untuk logik mudah, anda boleh mempertimbangkan menggunakan hasil fungsi penjana sebaliknya, tetapi anda perlu memilih kaedah yang sesuai berdasarkan senario tertentu.

Trend masa depan dalam Python termasuk pengoptimuman prestasi, jenis yang lebih kuat, peningkatan runtime alternatif, dan pertumbuhan berterusan bidang AI/ML. Pertama, Cpython terus mengoptimumkan, meningkatkan prestasi melalui masa permulaan yang lebih cepat, pengoptimuman panggilan fungsi dan operasi integer yang dicadangkan; Kedua, jenis petikan sangat terintegrasi ke dalam bahasa dan alat untuk meningkatkan pengalaman keselamatan dan pembangunan kod; Ketiga, runtime alternatif seperti Pyscript dan Nuitka menyediakan fungsi baru dan kelebihan prestasi; Akhirnya, bidang AI dan Sains Data terus berkembang, dan perpustakaan yang muncul mempromosikan pembangunan dan integrasi yang lebih cekap. Trend ini menunjukkan bahawa Python sentiasa menyesuaikan diri dengan perubahan teknologi dan mengekalkan kedudukan utama.

Modul soket Python adalah asas pengaturcaraan rangkaian, menyediakan fungsi komunikasi rangkaian peringkat rendah, sesuai untuk membina aplikasi klien dan pelayan. Untuk menyediakan pelayan TCP asas, anda perlu menggunakan socket.socket () untuk membuat objek, mengikat alamat dan port, panggilan. Listen () untuk mendengar sambungan, dan menerima sambungan klien melalui .accept (). Untuk membina klien TCP, anda perlu membuat objek soket dan panggilan .Connect () untuk menyambung ke pelayan, kemudian gunakan .sendall () untuk menghantar data dan .recv () untuk menerima respons. Untuk mengendalikan pelbagai pelanggan, anda boleh menggunakan 1. Threads: Mulakan benang baru setiap kali anda menyambung; 2. Asynchronous I/O: Sebagai contoh, Perpustakaan Asyncio dapat mencapai komunikasi yang tidak menyekat. Perkara yang perlu diperhatikan

Polimorfisme adalah konsep teras dalam pengaturcaraan berorientasikan objek Python, merujuk kepada "satu antara muka, pelbagai pelaksanaan", yang membolehkan pemprosesan bersatu pelbagai jenis objek. 1. Polimorfisme dilaksanakan melalui penulisan semula kaedah. Subkelas boleh mentakrifkan semula kaedah kelas induk. Sebagai contoh, kaedah bercakap () kelas haiwan mempunyai pelaksanaan yang berbeza dalam subkelas anjing dan kucing. 2. Penggunaan praktikal polimorfisme termasuk memudahkan struktur kod dan meningkatkan skalabilitas, seperti memanggil kaedah cabutan () secara seragam dalam program lukisan grafik, atau mengendalikan tingkah laku umum watak -watak yang berbeza dalam pembangunan permainan. 3. Polimorfisme pelaksanaan Python perlu memenuhi: Kelas induk mentakrifkan kaedah, dan kelas kanak -kanak mengatasi kaedah, tetapi tidak memerlukan warisan kelas induk yang sama. Selagi objek melaksanakan kaedah yang sama, ini dipanggil "jenis itik". 4. Perkara yang perlu diperhatikan termasuk penyelenggaraan

Jawapan teras kepada pengirim senarai Python adalah menguasai sintaks [Start: End: Step] dan memahami kelakuannya. 1. Format asas pengirim senarai adalah senarai [Mula: akhir: langkah], di mana permulaan adalah indeks permulaan (termasuk), akhir adalah indeks akhir (tidak termasuk), dan langkah adalah saiz langkah; 2. Omit Mula secara lalai bermula dari 0, endek akhir secara lalai hingga akhir, omite langkah secara lalai kepada 1; 3. Gunakan my_list [: n] untuk mendapatkan item n pertama, dan gunakan my_list [-n:] untuk mendapatkan item n yang terakhir; 4. Gunakan langkah untuk melangkau unsur -unsur, seperti my_list [:: 2] untuk mendapatkan angka, dan nilai langkah negatif dapat membalikkan senarai; 5. Kesalahpahaman biasa termasuk indeks akhir tidak
