


Import Python relatif boleh menjadi rumit untuk fungsi lambda. Saya menulis blog tentang ini 3 tahun yang lalu. Tetapi baru-baru ini, saya menghadapi isu yang sama dengan fungsi lambda Dockerized. Jadi, saya fikir sudah tiba masanya untuk blog baharu!
Anda boleh mengikuti langkah-langkah tersebut atau melihat hasilnya terus di GitHub.
Persediaan projek
Pastikan anda memasang cli AWS CDK.
brew install aws-cdk
Mulakan projek:
cdk init app --language=typescript
Persediaan Lambda
Mula-mula kita perlu mencipta struktur fail dan folder:
mkdir -p lib/functions/hello-world/hello_world touch lib/functions/hello-world/hello_world/__init__.py touch lib/functions/hello-world/requirements.txt touch lib/functions/hello-world/Dockerfile
Kini anda perlu mengisi Dockerfile, seperti ini:
FROM public.ecr.aws/lambda/python:3.12 COPY requirements.txt . COPY hello_world ${LAMBDA_TASK_ROOT}/hello_world RUN pip install --no-cache-dir -r requirements.txt CMD ["hello_world.handler"]
Kami menggunakan imej asas Python yang berdasarkan Python 3.12. Seterusnya, kami akan menyalin dalam fail requirements.txt dan kod sumber. Kami akan memasang semua kebergantungan yang disenaraikan dalam fail requirements.txt dan memastikan kaedah pengendali ditetapkan sebagai CMD.
Seterusnya, kami perlu mengisi fail Python kami dengan beberapa kod. Dalam fail __init__.py, anda boleh meletakkan kandungan berikut:
from typing import Dict, Any def handler(event: Dict[str, Any], context: Any) -> Dict[str, str]: name = event.get("name", "World") return { "Name": name, "Message": f"Hello {name}!", } __all__ = [ "handler" ]
NOTA: Kod yang digunakan di sini boleh menggunakan import relatif. Ini mungkin kerana ia berada dalam pakej yang berasingan. Contoh ini hanya menunjukkan kod dalam fail __init__.py. Walau bagaimanapun, anda boleh menggunakan berbilang fail di sini untuk meningkatkan kebolehselenggaraan projek anda.
Untuk contoh ini, saya tidak memerlukan sebarang kebergantungan, jadi kami boleh memastikan fail requirements.txt kosong. Saya menyertakannya dalam contoh ini untuk menggambarkan cara anda boleh memasukkan kebergantungan juga.
Cipta fungsi Lambda menggunakan IaC
Folder dan fail kami tersedia, jadi sudah tiba masanya untuk menambah fungsi Lambda pada binaan CDK. Anda hanya boleh menambahnya seperti ini:
new lambda.Function(this, 'Function', { functionName: "hello-world", code: lambda.Code.fromAssetImage("lib/functions/hello-world", { platform: ecr_assets.Platform.LINUX_ARM64, }), runtime: lambda.Runtime.FROM_IMAGE, handler: lambda.Handler.FROM_IMAGE, architecture: lambda.Architecture.ARM_64, timeout: cdk.Duration.seconds(15), memorySize: 128, });
Untuk ini berfungsi, anda juga memerlukan import berikut:
import * as lambda from 'aws-cdk-lib/aws-lambda'; import * as ecr_assets from 'aws-cdk-lib/aws-ecr-assets';
Perhatikan bahawa kami memastikan bahawa direktori kod menghala ke direktori yang mengandungi Dockerfile dan kami memilih platform ARM untuk kedua-dua kod dan fungsi itu sendiri.
Menguji fungsi lambda secara tempatan
Maklum balas pantas adalah penting, jadi mungkin terdapat kes di mana anda perlu menjalankan kontena secara setempat. Untuk ini, anda perlu membina bekas terlebih dahulu:
docker build --platform linux/arm64 \ -t hello-world:latest \ -f ./lib/functions/hello-world/Dockerfile \ ./lib/functions/hello-world
Perhatikan bahawa arahan ini boleh dilaksanakan daripada akar projek. Seterusnya, kita perlu memastikan ia berjalan sebelum kita boleh memanggilnya:
docker run --platform linux/arm64 -p 9000:8080 hello-world:latest
Selepas itu, anda boleh menggunakan fungsi seperti berikut:
curl http://localhost:9000/2015-03-31/functions/function/invocations -d '{"name": "Joris"}'
Kesimpulan
Import relatif boleh menjadi rumit! Anda perlu meletakkan kod anda dalam pakej. Ini membolehkan anda melakukan import relatif dalam pakej anda sendiri. Ini akan membolehkan kod yang lebih bersih, kerana anda boleh membahagikan tanggungjawab kepada berbilang fail, menjadikannya lebih mudah untuk diurus dan diselenggara.
Foto oleh Kaique Rocha
Atas ialah kandungan terperinci Import Python relatif dalam fungsi lambda Dockerized. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undress AI Tool
Gambar buka pakaian secara percuma

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Python's Unittest and Pytest adalah dua kerangka ujian yang digunakan secara meluas yang memudahkan penulisan, penganjuran dan menjalankan ujian automatik. 1. Kedua -duanya menyokong penemuan automatik kes ujian dan menyediakan struktur ujian yang jelas: Unittest mentakrifkan ujian dengan mewarisi kelas ujian dan bermula dengan ujian \ _; Pytest lebih ringkas, hanya memerlukan fungsi bermula dengan ujian \ _. 2. Mereka semua mempunyai sokongan dakwaan terbina dalam: Unittest menyediakan kaedah AssertEqual, AssertTrue dan lain-lain, manakala PYTest menggunakan pernyataan menegaskan yang dipertingkatkan untuk memaparkan butiran kegagalan secara automatik. 3. Semua mempunyai mekanisme untuk mengendalikan penyediaan ujian dan pembersihan: un

Pythonisidealfordataanalysisysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationswithfast, multi-dimensiArarraySandvectorizedoperationsLikenp.sqrt ()

Pengaturcaraan Dinamik (DP) mengoptimumkan proses penyelesaian dengan memecahkan masalah kompleks ke dalam subproblem yang lebih mudah dan menyimpan hasilnya untuk mengelakkan pengiraan berulang. Terdapat dua kaedah utama: 1. Top-down (Hafalan): Recursif menguraikan masalah dan menggunakan cache untuk menyimpan hasil pertengahan; 2. Bottom-Up (Jadual): Bangun secara beransur-ansur dari keadaan asas. Sesuai untuk senario di mana nilai maksimum/minimum, penyelesaian optimum atau subproblem yang bertindih diperlukan, seperti urutan Fibonacci, masalah backpacking, dan lain -lain.

Untuk melaksanakan iterator tersuai, anda perlu menentukan kaedah __iter__ dan __Next__ di dalam kelas. ① Kaedah __iter__ mengembalikan objek iterator itu sendiri, biasanya diri sendiri, bersesuaian dengan persekitaran berulang seperti untuk gelung; ② Kaedah __Next__ mengawal nilai setiap lelaran, mengembalikan elemen seterusnya dalam urutan, dan apabila tidak ada lagi item, pengecualian hentian harus dibuang; ③ Status mesti dikesan dengan betul dan keadaan penamatan mesti ditetapkan untuk mengelakkan gelung tak terhingga; ④ Logik kompleks seperti penapisan talian fail, dan perhatikan pembersihan sumber dan pengurusan memori; ⑤ Untuk logik mudah, anda boleh mempertimbangkan menggunakan hasil fungsi penjana sebaliknya, tetapi anda perlu memilih kaedah yang sesuai berdasarkan senario tertentu.

Trend masa depan dalam Python termasuk pengoptimuman prestasi, jenis yang lebih kuat, peningkatan runtime alternatif, dan pertumbuhan berterusan bidang AI/ML. Pertama, Cpython terus mengoptimumkan, meningkatkan prestasi melalui masa permulaan yang lebih cepat, pengoptimuman panggilan fungsi dan operasi integer yang dicadangkan; Kedua, jenis petikan sangat terintegrasi ke dalam bahasa dan alat untuk meningkatkan pengalaman keselamatan dan pembangunan kod; Ketiga, runtime alternatif seperti Pyscript dan Nuitka menyediakan fungsi baru dan kelebihan prestasi; Akhirnya, bidang AI dan Sains Data terus berkembang, dan perpustakaan yang muncul mempromosikan pembangunan dan integrasi yang lebih cekap. Trend ini menunjukkan bahawa Python sentiasa menyesuaikan diri dengan perubahan teknologi dan mengekalkan kedudukan utama.

Modul soket Python adalah asas pengaturcaraan rangkaian, menyediakan fungsi komunikasi rangkaian peringkat rendah, sesuai untuk membina aplikasi klien dan pelayan. Untuk menyediakan pelayan TCP asas, anda perlu menggunakan socket.socket () untuk membuat objek, mengikat alamat dan port, panggilan. Listen () untuk mendengar sambungan, dan menerima sambungan klien melalui .accept (). Untuk membina klien TCP, anda perlu membuat objek soket dan panggilan .Connect () untuk menyambung ke pelayan, kemudian gunakan .sendall () untuk menghantar data dan .recv () untuk menerima respons. Untuk mengendalikan pelbagai pelanggan, anda boleh menggunakan 1. Threads: Mulakan benang baru setiap kali anda menyambung; 2. Asynchronous I/O: Sebagai contoh, Perpustakaan Asyncio dapat mencapai komunikasi yang tidak menyekat. Perkara yang perlu diperhatikan

Polimorfisme adalah konsep teras dalam pengaturcaraan berorientasikan objek Python, merujuk kepada "satu antara muka, pelbagai pelaksanaan", yang membolehkan pemprosesan bersatu pelbagai jenis objek. 1. Polimorfisme dilaksanakan melalui penulisan semula kaedah. Subkelas boleh mentakrifkan semula kaedah kelas induk. Sebagai contoh, kaedah bercakap () kelas haiwan mempunyai pelaksanaan yang berbeza dalam subkelas anjing dan kucing. 2. Penggunaan praktikal polimorfisme termasuk memudahkan struktur kod dan meningkatkan skalabilitas, seperti memanggil kaedah cabutan () secara seragam dalam program lukisan grafik, atau mengendalikan tingkah laku umum watak -watak yang berbeza dalam pembangunan permainan. 3. Polimorfisme pelaksanaan Python perlu memenuhi: Kelas induk mentakrifkan kaedah, dan kelas kanak -kanak mengatasi kaedah, tetapi tidak memerlukan warisan kelas induk yang sama. Selagi objek melaksanakan kaedah yang sama, ini dipanggil "jenis itik". 4. Perkara yang perlu diperhatikan termasuk penyelenggaraan

Jawapan teras kepada pengirim senarai Python adalah menguasai sintaks [Start: End: Step] dan memahami kelakuannya. 1. Format asas pengirim senarai adalah senarai [Mula: akhir: langkah], di mana permulaan adalah indeks permulaan (termasuk), akhir adalah indeks akhir (tidak termasuk), dan langkah adalah saiz langkah; 2. Omit Mula secara lalai bermula dari 0, endek akhir secara lalai hingga akhir, omite langkah secara lalai kepada 1; 3. Gunakan my_list [: n] untuk mendapatkan item n pertama, dan gunakan my_list [-n:] untuk mendapatkan item n yang terakhir; 4. Gunakan langkah untuk melangkau unsur -unsur, seperti my_list [:: 2] untuk mendapatkan angka, dan nilai langkah negatif dapat membalikkan senarai; 5. Kesalahpahaman biasa termasuk indeks akhir tidak
