国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

Jadual Kandungan
101 Buku
Ciptaan Kami
Kami berada di Sederhana
Rumah pembangunan bahagian belakang Tutorial Python Teknik Python lanjutan untuk Pemprosesan dan Analisis Teks yang Cekap

Teknik Python lanjutan untuk Pemprosesan dan Analisis Teks yang Cekap

Jan 13, 2025 am 11:48 AM

dvanced Python Techniques for Efficient Text Processing and Analysis

Sebagai pengarang yang prolifik, saya menjemput anda untuk menerokai buku saya di Amazon. Ingat untuk mengikuti saya di Medium untuk sokongan dan kemas kini yang berterusan. Terima kasih atas sokongan anda yang tidak ternilai!

Bertahun-tahun pembangunan Python tertumpu pada pemprosesan dan analisis teks telah mengajar saya kepentingan teknik yang cekap. Artikel ini menyerlahkan enam kaedah Python lanjutan yang sering saya gunakan untuk meningkatkan prestasi projek NLP.

Ungkapan Biasa (Modul semula)

Ekspresi biasa sangat diperlukan untuk pemadanan corak dan manipulasi teks. Modul re Python menawarkan kit alat yang mantap. Menguasai regex memudahkan pemprosesan teks yang kompleks.

Sebagai contoh, mengekstrak alamat e-mel:

import re

text = "Contact us at info@example.com or support@example.com"
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
emails = re.findall(email_pattern, text)
print(emails)

Output: ['info@example.com', 'support@example.com']

Regex juga cemerlang dalam penggantian teks. Menukar jumlah dolar kepada euro:

text = "The price is .99"
new_text = re.sub(r'$(\d+\.\d{2})', lambda m: f"€{float(m.group(1))*0.85:.2f}", text)
print(new_text)

Output: "The price is €9.34"

Utiliti Modul Rentetan

Modul string Python, walaupun kurang menonjol daripada re, menyediakan pemalar dan fungsi yang berguna untuk pemprosesan teks, seperti mencipta jadual terjemahan atau mengendalikan pemalar rentetan.

Mengalih keluar tanda baca:

import string

text = "Hello, World! How are you?"
translator = str.maketrans("", "", string.punctuation)
cleaned_text = text.translate(translator)
print(cleaned_text)

Output: "Hello World How are you"

difflib untuk Perbandingan Jujukan

Membandingkan rentetan atau mengenal pasti persamaan adalah perkara biasa. difflib menawarkan alatan untuk perbandingan jujukan, sesuai untuk tujuan ini.

Mencari perkataan yang serupa:

from difflib import get_close_matches

words = ["python", "programming", "code", "developer"]
similar = get_close_matches("pythonic", words, n=1, cutoff=0.6)
print(similar)

Output: ['python']

SequenceMatcher mengendalikan perbandingan yang lebih rumit:

from difflib import SequenceMatcher

def similarity(a, b):
    return SequenceMatcher(None, a, b).ratio()

print(similarity("python", "pyhton"))

Output: (anggaran) 0.83

Jarak Levenshtein untuk Padanan Kabur

Algoritma jarak Levenshtein (selalunya menggunakan pustaka python-Levenshtein) adalah penting untuk semakan ejaan dan padanan kabur.

Semakan ejaan:

import Levenshtein

def spell_check(word, dictionary):
    return min(dictionary, key=lambda x: Levenshtein.distance(word, x))

dictionary = ["python", "programming", "code", "developer"]
print(spell_check("progamming", dictionary))

Output: "programming"

Mencari rentetan yang serupa:

def find_similar(word, words, max_distance=2):
    return [w for w in words if Levenshtein.distance(word, w) <= max_distance]

print(find_similar("code", ["code", "coder", "python"]))

Output: ['code', 'coder']

ftfy untuk Pembetulan Pengekodan Teks

Pustaka ftfy menangani isu pengekodan, secara automatik mengesan dan membetulkan masalah biasa seperti mojibake.

Membetulkan mojibake:

import ftfy

text = "The Mona Lisa doesn?¢a??a?¢t have eyebrows."
fixed_text = ftfy.fix_text(text)
print(fixed_text)

Output: "The Mona Lisa doesn't have eyebrows."

Menormalkan Unikod:

weird_text = "This is Fullwidth text"
normal_text = ftfy.fix_text(weird_text)
print(normal_text)

Output: "This is Fullwidth text"

Tokenisasi Cekap dengan spaCy dan NLTK

Tokenisasi adalah asas dalam NLP. spaCy dan NLTK menyediakan keupayaan tokenisasi lanjutan melebihi split() yang mudah.

Tokenisasi dengan spaCy:

import re

text = "Contact us at info@example.com or support@example.com"
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
emails = re.findall(email_pattern, text)
print(emails)

Output: ['The', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog', '.']

NLTK word_tokenize:

text = "The price is .99"
new_text = re.sub(r'$(\d+\.\d{2})', lambda m: f"€{float(m.group(1))*0.85:.2f}", text)
print(new_text)

Output: (Serupa dengan spaCy)

Aplikasi Praktikal & Amalan Terbaik

Teknik ini boleh digunakan untuk klasifikasi teks, analisis sentimen dan mendapatkan maklumat. Untuk set data yang besar, utamakan kecekapan memori (penjana), memanfaatkan berbilang pemprosesan untuk tugas terikat CPU, gunakan struktur data yang sesuai (set untuk ujian keahlian), susun ungkapan biasa untuk kegunaan berulang dan gunakan perpustakaan seperti panda untuk pemprosesan CSV.

Dengan melaksanakan teknik dan amalan terbaik ini, anda boleh meningkatkan kecekapan dan keberkesanan aliran kerja pemprosesan teks anda dengan ketara. Ingat bahawa amalan dan percubaan yang konsisten adalah kunci untuk menguasai kemahiran berharga ini.


101 Buku

101 Books, sebuah rumah penerbitan berkuasa AI yang diasaskan bersama oleh Aarav Joshi, menawarkan buku berkualiti tinggi dengan harga berpatutan berkat teknologi AI yang canggih. Lihat Kod Bersih Golang di Amazon. Cari "Aarav Joshi" untuk lebih banyak tajuk dan diskaun istimewa!

Ciptaan Kami

Pusat Pelabur, Pusat Pelabur (Bahasa Sepanyol/Jerman), Kehidupan Pintar, Zaman & Gema, Misteri Membingungkan, Hindutva, Elite Dev, Sekolah JS


Kami berada di Sederhana

Tech Koala Insights, Epochs & Echoes World, Investor Central Medium, Medium Misteri Membingungkan, Sains & Epochs Medium, Hindutva Moden

Atas ialah kandungan terperinci Teknik Python lanjutan untuk Pemprosesan dan Analisis Teks yang Cekap. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Bagaimanakah rangka kerja Python atau PyTest memudahkan ujian automatik? Bagaimanakah rangka kerja Python atau PyTest memudahkan ujian automatik? Jun 19, 2025 am 01:10 AM

Python's Unittest and Pytest adalah dua kerangka ujian yang digunakan secara meluas yang memudahkan penulisan, penganjuran dan menjalankan ujian automatik. 1. Kedua -duanya menyokong penemuan automatik kes ujian dan menyediakan struktur ujian yang jelas: Unittest mentakrifkan ujian dengan mewarisi kelas ujian dan bermula dengan ujian \ _; Pytest lebih ringkas, hanya memerlukan fungsi bermula dengan ujian \ _. 2. Mereka semua mempunyai sokongan dakwaan terbina dalam: Unittest menyediakan kaedah AssertEqual, AssertTrue dan lain-lain, manakala PYTest menggunakan pernyataan menegaskan yang dipertingkatkan untuk memaparkan butiran kegagalan secara automatik. 3. Semua mempunyai mekanisme untuk mengendalikan penyediaan ujian dan pembersihan: un

Bagaimanakah Python boleh digunakan untuk analisis data dan manipulasi dengan perpustakaan seperti numpy dan panda? Bagaimanakah Python boleh digunakan untuk analisis data dan manipulasi dengan perpustakaan seperti numpy dan panda? Jun 19, 2025 am 01:04 AM

Pythonisidealfordataanalysisysisduetonumpyandpandas.1) numpyexcelsatnumericalcomputationswithfast, multi-dimensiArarraySandvectorizedoperationsLikenp.sqrt ()

Apakah teknik pengaturcaraan dinamik, dan bagaimana saya menggunakannya dalam Python? Apakah teknik pengaturcaraan dinamik, dan bagaimana saya menggunakannya dalam Python? Jun 20, 2025 am 12:57 AM

Pengaturcaraan Dinamik (DP) mengoptimumkan proses penyelesaian dengan memecahkan masalah kompleks ke dalam subproblem yang lebih mudah dan menyimpan hasilnya untuk mengelakkan pengiraan berulang. Terdapat dua kaedah utama: 1. Top-down (Hafalan): Recursif menguraikan masalah dan menggunakan cache untuk menyimpan hasil pertengahan; 2. Bottom-Up (Jadual): Bangun secara beransur-ansur dari keadaan asas. Sesuai untuk senario di mana nilai maksimum/minimum, penyelesaian optimum atau subproblem yang bertindih diperlukan, seperti urutan Fibonacci, masalah backpacking, dan lain -lain.

Bagaimana anda boleh melaksanakan iterators tersuai di Python menggunakan __iter__ dan __Next__? Bagaimana anda boleh melaksanakan iterators tersuai di Python menggunakan __iter__ dan __Next__? Jun 19, 2025 am 01:12 AM

Untuk melaksanakan iterator tersuai, anda perlu menentukan kaedah __iter__ dan __Next__ di dalam kelas. ① Kaedah __iter__ mengembalikan objek iterator itu sendiri, biasanya diri sendiri, bersesuaian dengan persekitaran berulang seperti untuk gelung; ② Kaedah __Next__ mengawal nilai setiap lelaran, mengembalikan elemen seterusnya dalam urutan, dan apabila tidak ada lagi item, pengecualian hentian harus dibuang; ③ Status mesti dikesan dengan betul dan keadaan penamatan mesti ditetapkan untuk mengelakkan gelung tak terhingga; ④ Logik kompleks seperti penapisan talian fail, dan perhatikan pembersihan sumber dan pengurusan memori; ⑤ Untuk logik mudah, anda boleh mempertimbangkan menggunakan hasil fungsi penjana sebaliknya, tetapi anda perlu memilih kaedah yang sesuai berdasarkan senario tertentu.

Apakah trend yang muncul atau arahan masa depan dalam bahasa pengaturcaraan Python dan ekosistemnya? Apakah trend yang muncul atau arahan masa depan dalam bahasa pengaturcaraan Python dan ekosistemnya? Jun 19, 2025 am 01:09 AM

Trend masa depan dalam Python termasuk pengoptimuman prestasi, jenis yang lebih kuat, peningkatan runtime alternatif, dan pertumbuhan berterusan bidang AI/ML. Pertama, Cpython terus mengoptimumkan, meningkatkan prestasi melalui masa permulaan yang lebih cepat, pengoptimuman panggilan fungsi dan operasi integer yang dicadangkan; Kedua, jenis petikan sangat terintegrasi ke dalam bahasa dan alat untuk meningkatkan pengalaman keselamatan dan pembangunan kod; Ketiga, runtime alternatif seperti Pyscript dan Nuitka menyediakan fungsi baru dan kelebihan prestasi; Akhirnya, bidang AI dan Sains Data terus berkembang, dan perpustakaan yang muncul mempromosikan pembangunan dan integrasi yang lebih cekap. Trend ini menunjukkan bahawa Python sentiasa menyesuaikan diri dengan perubahan teknologi dan mengekalkan kedudukan utama.

Bagaimana saya melakukan pengaturcaraan rangkaian di python menggunakan soket? Bagaimana saya melakukan pengaturcaraan rangkaian di python menggunakan soket? Jun 20, 2025 am 12:56 AM

Modul soket Python adalah asas pengaturcaraan rangkaian, menyediakan fungsi komunikasi rangkaian peringkat rendah, sesuai untuk membina aplikasi klien dan pelayan. Untuk menyediakan pelayan TCP asas, anda perlu menggunakan socket.socket () untuk membuat objek, mengikat alamat dan port, panggilan. Listen () untuk mendengar sambungan, dan menerima sambungan klien melalui .accept (). Untuk membina klien TCP, anda perlu membuat objek soket dan panggilan .Connect () untuk menyambung ke pelayan, kemudian gunakan .sendall () untuk menghantar data dan .recv () untuk menerima respons. Untuk mengendalikan pelbagai pelanggan, anda boleh menggunakan 1. Threads: Mulakan benang baru setiap kali anda menyambung; 2. Asynchronous I/O: Sebagai contoh, Perpustakaan Asyncio dapat mencapai komunikasi yang tidak menyekat. Perkara yang perlu diperhatikan

Polimorfisme dalam kelas python Polimorfisme dalam kelas python Jul 05, 2025 am 02:58 AM

Polimorfisme adalah konsep teras dalam pengaturcaraan berorientasikan objek Python, merujuk kepada "satu antara muka, pelbagai pelaksanaan", yang membolehkan pemprosesan bersatu pelbagai jenis objek. 1. Polimorfisme dilaksanakan melalui penulisan semula kaedah. Subkelas boleh mentakrifkan semula kaedah kelas induk. Sebagai contoh, kaedah bercakap () kelas haiwan mempunyai pelaksanaan yang berbeza dalam subkelas anjing dan kucing. 2. Penggunaan praktikal polimorfisme termasuk memudahkan struktur kod dan meningkatkan skalabilitas, seperti memanggil kaedah cabutan () secara seragam dalam program lukisan grafik, atau mengendalikan tingkah laku umum watak -watak yang berbeza dalam pembangunan permainan. 3. Polimorfisme pelaksanaan Python perlu memenuhi: Kelas induk mentakrifkan kaedah, dan kelas kanak -kanak mengatasi kaedah, tetapi tidak memerlukan warisan kelas induk yang sama. Selagi objek melaksanakan kaedah yang sama, ini dipanggil "jenis itik". 4. Perkara yang perlu diperhatikan termasuk penyelenggaraan

Bagaimana saya mengiris senarai dalam python? Bagaimana saya mengiris senarai dalam python? Jun 20, 2025 am 12:51 AM

Jawapan teras kepada pengirim senarai Python adalah menguasai sintaks [Start: End: Step] dan memahami kelakuannya. 1. Format asas pengirim senarai adalah senarai [Mula: akhir: langkah], di mana permulaan adalah indeks permulaan (termasuk), akhir adalah indeks akhir (tidak termasuk), dan langkah adalah saiz langkah; 2. Omit Mula secara lalai bermula dari 0, endek akhir secara lalai hingga akhir, omite langkah secara lalai kepada 1; 3. Gunakan my_list [: n] untuk mendapatkan item n pertama, dan gunakan my_list [-n:] untuk mendapatkan item n yang terakhir; 4. Gunakan langkah untuk melangkau unsur -unsur, seperti my_list [:: 2] untuk mendapatkan angka, dan nilai langkah negatif dapat membalikkan senarai; 5. Kesalahpahaman biasa termasuk indeks akhir tidak

See all articles