国产av日韩一区二区三区精品,成人性爱视频在线观看,国产,欧美,日韩,一区,www.成色av久久成人,2222eeee成人天堂

目錄
Use pandas.read_html() to extract tables
Handle missing headers or messy formatting
Deal with complex pages using requests or filtering
Watch out for common gotchas
首頁 后端開發(fā) Python教程 如何用Python和Pandas解析HTML表

如何用Python和Pandas解析HTML表

Jul 10, 2025 pm 01:39 PM
python

是的,你可以使用Python和Pandas解析HTML表格。首先,使用pandas.read_html()函數(shù)提取表格,該函數(shù)可將網(wǎng)頁或字符串中的HTML

元素解析為DataFrame列表;接著,若表格無明確列標(biāo)題,可通過指定header參數(shù)或手動設(shè)置.columns屬性修復(fù);對于復(fù)雜頁面,可結(jié)合requests庫獲取HTML內(nèi)容或使用BeautifulSoup定位特定表格;注意JavaScript渲染、編碼問題及多表識別等常見陷阱。

How to parse an HTML table with Python and Pandas

Yes, you can parse an HTML table with Python and Pandas — and it's actually pretty straightforward. If you've ever looked at a webpage with tabular data and wished you could get that into a DataFrame quickly, Pandas has a built-in function for that.

How to parse an HTML table with Python and Pandas

Use pandas.read_html() to extract tables

Pandas provides read_html() which scans a webpage or string for HTML <table> elements and tries to parse them into DataFrames.<p>You just need to give it a URL or the raw HTML content:</p> <img src="/static/imghw/default1.png" data-src="https://img.php.cn/upload/article/000/000/000/175212598696473.jpeg" class="lazy" alt="How to parse an HTML table with Python and Pandas"><pre class='brush:php;toolbar:false;'>import pandas as pd url = 'https://example.com/table-page' tables = pd.read_html(url)</pre><p>This returns a list of DataFrames — one for each table on the page. You can then pick the one you want by index, like <code>tables[0].

Sometimes pages have multiple tables and not all are useful. You might need to inspect the output to find which index contains your desired data.

How to parse an HTML table with Python and Pandas

Handle missing headers or messy formatting

Not every HTML table includes clear column headers. If the table doesn’t have <th> tags or if they're incomplete, read_html() will assign default column names like 0, 1, 2...

To fix this:

  • Look at the page and see if headers are part of the first row (<tr>) instead of in <thead>.
  • You can manually set column names using .columns = [...] after reading the table.
  • Sometimes adding header=0 or header=[0,1] (for multi-indexed headers) helps.

Example:

df = pd.read_html(url, header=0)[0]

Also be aware that some tables may include merged cells or nested tables, which can confuse the parser. In those cases, the resulting DataFrame might look misaligned.

Deal with complex pages using requests or filtering

If the page needs authentication or JavaScript rendering, read_html() alone won't help. But for static pages, combining it with requests gives more control.

Here’s how you can fetch HTML first:

import requests
import pandas as pd

response = requests.get(url)
tables = pd.read_html(response.text)

If there are many tables and you want to filter by attributes like class name or ID, you’ll need to use a parser like BeautifulSoup first to isolate the specific table, then pass that HTML snippet to read_html().

For example:

from bs4 import BeautifulSoup

soup = BeautifulSoup(response.text, 'html.parser')
target_table = soup.find('table', {'class': 'data'})
df = pd.read_html(str(target_table))[0]

This is especially helpful when a page has clutter or multiple similar tables.

Watch out for common gotchas

  • JavaScript-rendered tables: read_html() only works on static HTML. If the table is loaded dynamically (like with AJAX), you'll need tools like Selenium or Playwright to render the page first.
  • Encoding issues: If characters look weird, try setting the correct encoding with response.encoding = 'utf-8' or similar.
  • Too many tables? Loop through the list and print shapes or first few rows to identify the right one.

Like:

for i, df in enumerate(tables):
    print(f"Table {i} shape: {df.shape}")
    print(df.head())

That way, you can visually scan what each parsed table looks like before deciding which one to work with.

基本上就這些。Parsing HTML tables with Pandas is fast and effective for most basic use cases — just keep an eye out for edge cases like dynamic content or missing headers.

以上是如何用Python和Pandas解析HTML表的詳細(xì)內(nèi)容。更多信息請關(guān)注PHP中文網(wǎng)其他相關(guān)文章!

本站聲明
本文內(nèi)容由網(wǎng)友自發(fā)貢獻(xiàn),版權(quán)歸原作者所有,本站不承擔(dān)相應(yīng)法律責(zé)任。如您發(fā)現(xiàn)有涉嫌抄襲侵權(quán)的內(nèi)容,請聯(lián)系admin@php.cn

熱AI工具

Undress AI Tool

Undress AI Tool

免費(fèi)脫衣服圖片

Undresser.AI Undress

Undresser.AI Undress

人工智能驅(qū)動的應(yīng)用程序,用于創(chuàng)建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用于從照片中去除衣服的在線人工智能工具。

Clothoff.io

Clothoff.io

AI脫衣機(jī)

Video Face Swap

Video Face Swap

使用我們完全免費(fèi)的人工智能換臉工具輕松在任何視頻中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費(fèi)的代碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

功能強(qiáng)大的PHP集成開發(fā)環(huán)境

Dreamweaver CS6

Dreamweaver CS6

視覺化網(wǎng)頁開發(fā)工具

SublimeText3 Mac版

SublimeText3 Mac版

神級代碼編輯軟件(SublimeText3)

您如何連接到Python中的數(shù)據(jù)庫? 您如何連接到Python中的數(shù)據(jù)庫? Jul 10, 2025 pm 01:44 PM

toconnecttoadatabaseinpython,usetheappropriatelibraryforthedatabasetype.1.forsqlite,useqlite3withConnect()andManageWithCurso randcommit.2.formysql,intastmysql-connector-pythonandprovidecredecredecredentialsinconnect()。3.forPostgresql,installpsycopg2andconfigu

python def vs lambda Deep Dive python def vs lambda Deep Dive Jul 10, 2025 pm 01:45 PM

def適用于復(fù)雜函數(shù),支持多行、文檔字符串和嵌套;lambda適合簡單匿名函數(shù),常用于參數(shù)傳函數(shù)的場景。選def的情況:①函數(shù)體多行;②需文檔說明;③被多處調(diào)用。選lambda的情況:①一次性使用;②無需名字或文檔;③邏輯簡單。注意lambda延遲綁定變量可能引發(fā)錯誤,且不支持默認(rèn)參數(shù)、生成器或異步。實(shí)際應(yīng)用中根據(jù)需求靈活選擇,清晰優(yōu)先。

如何在python中調(diào)用父班啟動? 如何在python中調(diào)用父班啟動? Jul 10, 2025 pm 01:00 PM

在Python中,調(diào)用父類的__init__方法主要有兩種方式。1.使用super()函數(shù),這是現(xiàn)代且推薦的方法,它使代碼更清晰,并自動遵循方法解析順序(MRO),例如super().__init__(name)。2.直接調(diào)用父類的__init__方法,如Parent.__init__(self,name),這在需要完全控制或處理舊代碼時(shí)有用,但不會自動遵循MRO。在多重繼承情況下,應(yīng)始終一致地使用super()以確保正確的初始化順序和行為。

在Python中訪問嵌套的JSON對象 在Python中訪問嵌套的JSON對象 Jul 11, 2025 am 02:36 AM

在Python中訪問嵌套JSON對象的方法是先明確結(jié)構(gòu),再逐層索引。首先確認(rèn)JSON的層級關(guān)系,例如字典嵌套字典或列表;接著使用字典鍵和列表索引逐層訪問,如data"details"["zip"]獲取zip編碼,data"details"[0]獲取第一個愛好;為避免KeyError和IndexError,可用.get()方法設(shè)置默認(rèn)值,或封裝函數(shù)safe_get實(shí)現(xiàn)安全訪問;對于復(fù)雜結(jié)構(gòu),可遞歸查找或使用第三方庫如jmespath處理。

如何繼續(xù)在Python中繼續(xù)循環(huán) 如何繼續(xù)在Python中繼續(xù)循環(huán) Jul 10, 2025 pm 12:22 PM

在Python的for循環(huán)中,使用continue語句可跳過當(dāng)前循環(huán)的某些操作并進(jìn)入下一輪循環(huán)。當(dāng)程序執(zhí)行到continue時(shí),會立刻結(jié)束當(dāng)前這一輪循環(huán),跳過后續(xù)代碼,開始下一次循環(huán)。例如,在遍歷數(shù)字范圍時(shí)排除特定值、數(shù)據(jù)清洗時(shí)跳過無效條目、將不符合條件的情況提前跳過以使主邏輯更清晰等場景均適用。1.跳過特定值:如遍歷列表時(shí)排除不需要處理的項(xiàng);2.數(shù)據(jù)清洗:讀取外部數(shù)據(jù)時(shí)跳過異?;驘o效數(shù)據(jù);3.條件判斷前置:提前過濾非目標(biāo)數(shù)據(jù),提升代碼可讀性。注意事項(xiàng)包括:continue只影響當(dāng)前循環(huán)層,不會

如何刮擦需要使用Python登錄的網(wǎng)站 如何刮擦需要使用Python登錄的網(wǎng)站 Jul 10, 2025 pm 01:36 PM

ToscrapeawebsitethatrequiresloginusingPython,simulatetheloginprocessandmaintainthesession.First,understandhowtheloginworksbyinspectingtheloginflowinyourbrowser'sDeveloperTools,notingtheloginURL,requiredparameters,andanytokensorredirectsinvolved.Secon

如何用Python和Pandas解析HTML表 如何用Python和Pandas解析HTML表 Jul 10, 2025 pm 01:39 PM

是的,你可以使用Python和Pandas解析HTML表格。首先,使用pandas.read_html()函數(shù)提取表格,該函數(shù)可將網(wǎng)頁或字符串中的HTML元素解析為DataFrame列表;接著,若表格無明確列標(biāo)題,可通過指定header參數(shù)或手動設(shè)置.columns屬性修復(fù);對于復(fù)雜頁面,可結(jié)合requests庫獲取HTML內(nèi)容或使用BeautifulSoup定位特定表格;注意JavaScript渲染、編碼問題及多表識別等常見陷阱。

使用Python async/等待實(shí)施異步編程 使用Python async/等待實(shí)施異步編程 Jul 11, 2025 am 02:41 AM

異步編程在Python中通過async和await關(guān)鍵字變得更加易用。它允許編寫非阻塞代碼以并發(fā)處理多項(xiàng)任務(wù),尤其適用于I/O密集型操作。asyncdef定義了一個可暫停和恢復(fù)的協(xié)程,而await用于等待任務(wù)完成而不阻塞整個程序。運(yùn)行異步代碼需使用事件循環(huán),推薦使用asyncio.run()啟動,并發(fā)執(zhí)行多個協(xié)程時(shí)可用asyncio.gather()。常見模式包括同時(shí)獲取多個URL數(shù)據(jù)、文件讀寫及網(wǎng)絡(luò)服務(wù)處理。注意事項(xiàng)包括:需使用支持異步的庫如aiohttp;CPU密集型任務(wù)不適用異步;避免混合

See all articles